These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21728666)

  • 1. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays.
    Yeh HC; Yang RJ; Luo WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056326. PubMed ID: 21728666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.
    Zhao C; Yang C
    Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traveling wave electroosmosis: the influence of electrode array geometry.
    Hrdlička J; Patel NS; Snita D
    Electrophoresis; 2014 Jul; 35(12-13):1790-4. PubMed ID: 24723297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zig-zag arrangement of four electrodes for ac electro-osmotic micropumps.
    Hrdlička J; Cervenka P; Přibyl M; Snita D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016307. PubMed ID: 21867304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical prediction of ac electro-osmotic flows around polarized electrodes.
    Suh YK; Kang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046309. PubMed ID: 19518335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes.
    Ramos A; González A; Castellanos A; Green NG; Morgan H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056302. PubMed ID: 12786267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes.
    Brown AB; Smith CG; Rennie AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016305. PubMed ID: 11304351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation.
    Green NG; Ramos A; González A; Morgan H; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026305. PubMed ID: 12241283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics.
    Huang CC; Bazant MZ; Thorsen T
    Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.
    García-Sánchez P; Ramos A; Green NG; Morgan H
    Langmuir; 2008 Sep; 24(17):9361-9. PubMed ID: 18672919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-osmotic flow through a two-dimensional screen-pump filter.
    Liu YH; Kuo CY; Chang CC; Wang CY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036301. PubMed ID: 22060486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting particle collection by electro-osmosis in microfluidic systems.
    Mohtar MN; Hoettges KF; Hughes MP
    Electrophoresis; 2014 Feb; 35(2-3):345-51. PubMed ID: 24132700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.
    Urbanski JP; Levitan JA; Burch DN; Thorsen T; Bazant MZ
    J Colloid Interface Sci; 2007 May; 309(2):332-41. PubMed ID: 17346735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.
    García-Sánchez P; Ramos A; González A; Green NG; Morgan H
    Langmuir; 2009 May; 25(9):4988-97. PubMed ID: 19320476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of an ac electro-osmotic pump with step microelectrodes.
    Kim BJ; Lee SH; Rezazadeh S; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056302. PubMed ID: 21728642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.