These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21728677)

  • 1. Approach to first-order exact solutions of the Ablowitz-Ladik equation.
    Ankiewicz A; Akhmediev N; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056602. PubMed ID: 21728677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.
    Ankiewicz A; Akhmediev N; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.
    Akhmediev N; Ankiewicz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046603. PubMed ID: 21599322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.
    Khare A; Rasmussen KØ; Salerno M; Samuelsen MR; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016607. PubMed ID: 16907204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.
    Yu F
    Chaos; 2017 Feb; 27(2):023108. PubMed ID: 28249392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.
    Yu F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032914. PubMed ID: 25871179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions.
    Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022919. PubMed ID: 25768581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.
    Wen XY; Yan Z; Malomed BA
    Chaos; 2016 Dec; 26(12):123110. PubMed ID: 28039965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of solitons in a randomly perturbed Ablowitz-Ladik chain.
    Garnier J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026608. PubMed ID: 11308602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation.
    Nakamura K; Sobirov ZA; Matrasulov DU; Sawada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026609. PubMed ID: 21929130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermalization of the Ablowitz-Ladik lattice in the presence of non-integrable perturbations.
    Selim MA; Pyrialakos GG; Wu FO; Musslimani Z; Makris KG; Khajavikhan M; Christodoulides D
    Opt Lett; 2023 Apr; 48(8):2206-2209. PubMed ID: 37058678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials.
    Mertens FG; Cooper F; Arévalo E; Khare A; Saxena A; Bishop AR
    Phys Rev E; 2016 Sep; 94(3-1):032213. PubMed ID: 27739801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solutions of the higher-order Manakov-type continuous and discrete equations.
    Chowdury A; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012902. PubMed ID: 25122355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact analytical solutions for the variational equations derived from the nonlinear Schrödinger equation.
    Moubissi AB; Nakkeeran K; Abobaker AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026603. PubMed ID: 17930163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods.
    Kamalian M; Prilepsky JE; Le ST; Turitsyn SK
    Opt Express; 2016 Aug; 24(16):18353-69. PubMed ID: 27505799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients.
    Hao R; Li L; Li Z; Zhou G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066603. PubMed ID: 15697522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.
    Kruglov VI; Peacock AC; Harvey JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056619. PubMed ID: 16089680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakup of a multisoliton state of the linearly damped nonlinear Schrödinger equation.
    Prilepsky JE; Derevyanko SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036616. PubMed ID: 17500818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impulse response of nonlinear Schrödinger equation and its implications for pre-dispersed fiber-optic communication systems.
    Kumar S; Shao J; Liang X
    Opt Express; 2014 Dec; 22(26):32282-92. PubMed ID: 25607193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.