These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21728692)

  • 1. Kapitza resistance in the lattice Boltzmann-Peierls-Callaway equation for multiphase phonon gases.
    Lee J; Roy AK; Farmer BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056706. PubMed ID: 21728692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice-Boltzmann modeling of phonon hydrodynamics.
    Jiaung WS; Ho JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066710. PubMed ID: 18643400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives.
    Roy AK; Farmer BL; Varshney V; Sihn S; Lee J; Ganguli S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):545-63. PubMed ID: 22295993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter-dependent thermal conductivity of one-dimensional phi4 lattice.
    Li N; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011108. PubMed ID: 17677411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice thermal conductivity of borophene from first principle calculation.
    Xiao H; Cao W; Ouyang T; Guo S; He C; Zhong J
    Sci Rep; 2017 Apr; 7():45986. PubMed ID: 28374853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical mechanics of the fluctuating lattice Boltzmann equation.
    Dünweg B; Schiller UD; Ladd AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036704. PubMed ID: 17930358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat vortex in hydrodynamic phonon transport of two-dimensional materials.
    Shang MY; Zhang C; Guo Z; Lü JT
    Sci Rep; 2020 May; 10(1):8272. PubMed ID: 32427969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.
    Lycett-Brown D; Luo KH
    Phys Rev E; 2016 Nov; 94(5-1):053313. PubMed ID: 27967140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation.
    Yoshida H; Kobayashi T; Hayashi H; Kinjo T; Washizu H; Fukuzawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013303. PubMed ID: 25122406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct solution to the linearized phonon Boltzmann equation.
    Chaput L
    Phys Rev Lett; 2013 Jun; 110(26):265506. PubMed ID: 23848898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-efficient and parameter-free computation of submicron thermal transport with phonon Boltzmann transport equation.
    Hu Y; Shen Y; Bao H
    Fundam Res; 2024 Jul; 4(4):907-915. PubMed ID: 39156572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent phonon transmission across dissimilar material interfaces.
    Li X; Yang R
    J Phys Condens Matter; 2012 Apr; 24(15):155302. PubMed ID: 22442141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations.
    Luo LS; Liao W; Chen X; Peng Y; Zhang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional lattice Boltzmann model with self-tuning equation of state for multiphase flows.
    Huang R; Li Q; Qiu Y
    Phys Rev E; 2024 Jun; 109(6-2):065306. PubMed ID: 39021008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size and dimensionality dependent phonon conductivity in nanocomposites.
    Al-Otaibi J; Srivastava GP
    J Phys Condens Matter; 2016 Apr; 28(14):145304. PubMed ID: 26974428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.