These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21728692)

  • 21. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness.
    Liang Z; Sasikumar K; Keblinski P
    Phys Rev Lett; 2014 Aug; 113(6):065901. PubMed ID: 25148335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.
    Amiri Delouei A; Nazari M; Kayhani MH; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of gas-phonon coupling in thermal transpiration flows.
    Guo X; Singh D; Murthy J; Alexeenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046310. PubMed ID: 19905439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon mode at interface and its impact on interfacial thermal transport.
    Shan S; Zhang Z; Volz S; Chen J
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38968932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recasting the Callaway and von Baeyer thermal conductivity model on defective oxide materials: the ZnO-In2O3 system as an example.
    Liang X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27889-93. PubMed ID: 26439937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.
    Yin E; Li Q; Lian W
    Phys Chem Chem Phys; 2023 Feb; 25(5):3629-3638. PubMed ID: 36263751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phonon Transmission Across the Si-Ge Interface.
    Bi K; Lou J; Chen Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3187-90. PubMed ID: 26353560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of thin film confined between two dissimilar solids on interfacial thermal resistance.
    Liang Z; Tsai HL
    J Phys Condens Matter; 2011 Dec; 23(49):495303. PubMed ID: 22109825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative approach to the solution of the dispersion relation for a generalized lattice Boltzmann equation.
    Reis T; Phillips TN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026702. PubMed ID: 18352143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.
    Karani H; Huber C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorene grain boundary effect on phonon transport and phononic applications.
    Wang X; Wang Q; Liu X; Huang Z; Liu X
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35325884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified lattice Boltzmann model and application to multiphase flows.
    Luo KH; Fei L; Wang G
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200397. PubMed ID: 34455840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager vs. Kapitza formalisms.
    Rurali R; CartoixĂ  X; Bedeaux D; Kjelstrup S; Colombo L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22623-22628. PubMed ID: 30131997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing.
    Heinz S; Angel EC; Trapp M; Kleebe HJ; Jakob G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32630581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the magnon-phonon relaxation in the magnon transport under thermal gradient in yttrium iron garnet.
    Costa SS; Sampaio LC
    J Phys Condens Matter; 2019 Jul; 31(27):275804. PubMed ID: 30952140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.