These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21728960)

  • 21. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.
    Räth C; Baum T; Monetti R; Sidorenko I; Wolf P; Eckstein F; Matsuura M; Lochmüller EM; Zysset PK; Rummeny EJ; Link TM; Bauer JS
    Bone; 2013 Dec; 57(2):377-83. PubMed ID: 24056252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs.
    Huber MB; Carballido-Gamio J; Fritscher K; Schubert R; Haenni M; Hengg C; Majumdar S; Link TM
    Med Phys; 2009 Nov; 36(11):5089-98. PubMed ID: 19994519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical and trabecular load sharing in the human vertebral body.
    Eswaran SK; Gupta A; Adams MF; Keaveny TM
    J Bone Miner Res; 2006 Feb; 21(2):307-14. PubMed ID: 16418787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men.
    Rudäng R; Darelid A; Nilsson M; Mellström D; Ohlsson C; Lorentzon M
    J Bone Miner Res; 2013 Nov; 28(11):2305-16. PubMed ID: 23658040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro.
    Boehm HF; Raeth C; Monetti RA; Mueller D; Newitt D; Majumdar S; Rummeny E; Morfill G; Link TM
    Invest Radiol; 2003 May; 38(5):269-80. PubMed ID: 12750616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength.
    Majumdar S; Lin J; Link T; Millard J; Augat P; Ouyang X; Newitt D; Gould R; Kothari M; Genant H
    Med Phys; 1999 Jul; 26(7):1330-40. PubMed ID: 10435535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sex differences of human trabecular bone microstructure in aging are site-dependent.
    Eckstein F; Matsuura M; Kuhn V; Priemel M; Müller R; Link TM; Lochmüller EM
    J Bone Miner Res; 2007 Jun; 22(6):817-24. PubMed ID: 17352643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.
    Alomari AH; Wille ML; Langton CM
    Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections.
    Ouyang X; Majumdar S; Link TM; Lu Y; Augat P; Lin J; Newitt D; Genant HK
    Med Phys; 1998 Oct; 25(10):2037-45. PubMed ID: 9800713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study.
    Guenoun D; Le Corroller T; Acid S; Pithioux M; Pauly V; Ariey-Bonnet D; Chabrand P; Champsaur P
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1320-6. PubMed ID: 23823577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study.
    Pialat JB; Vilayphiou N; Boutroy S; Gouttenoire PJ; Sornay-Rendu E; Chapurlat R; Peyrin F
    Bone; 2012 Sep; 51(3):362-8. PubMed ID: 22728912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method.
    Matsumoto T; Ohnishi I; Bessho M; Imai K; Ohashi S; Nakamura K
    Spine (Phila Pa 1976); 2009 Jun; 34(14):1464-9. PubMed ID: 19525837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro.
    Bauer JS; Kohlmann S; Eckstein F; Mueller D; Lochmüller EM; Link TM
    Calcif Tissue Int; 2006 Feb; 78(2):78-89. PubMed ID: 16467973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis.
    Graeff C; Marin F; Petto H; Kayser O; Reisinger A; Peña J; Zysset P; Glüer CC
    Bone; 2013 Feb; 52(2):568-77. PubMed ID: 23149277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests.
    Haidekker MA; Andresen R; Werner HJ
    Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.