These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21729756)
1. Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Chu C; Mourão-Miranda J; Chiu YC; Kriegeskorte N; Tan G; Ashburner J Neuroimage; 2011 Sep; 58(2):560-71. PubMed ID: 21729756 [TBL] [Abstract][Full Text] [Related]
2. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Misaki M; Kim Y; Bandettini PA; Kriegeskorte N Neuroimage; 2010 Oct; 53(1):103-18. PubMed ID: 20580933 [TBL] [Abstract][Full Text] [Related]
3. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
4. Unsupervised analysis of fMRI data using kernel canonical correlation. Hardoon DR; Mourão-Miranda J; Brammer M; Shawe-Taylor J Neuroimage; 2007 Oct; 37(4):1250-9. PubMed ID: 17686634 [TBL] [Abstract][Full Text] [Related]
5. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. Rasmussen PM; Madsen KH; Lund TE; Hansen LK Neuroimage; 2011 Apr; 55(3):1120-31. PubMed ID: 21168511 [TBL] [Abstract][Full Text] [Related]
6. Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes. Churchill NW; Yourganov G; Strother SC Hum Brain Mapp; 2014 Sep; 35(9):4499-517. PubMed ID: 24639383 [TBL] [Abstract][Full Text] [Related]
7. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Chincarini A; Bosco P; Calvini P; Gemme G; Esposito M; Olivieri C; Rei L; Squarcia S; Rodriguez G; Bellotti R; Cerello P; De Mitri I; Retico A; Nobili F; Neuroimage; 2011 Sep; 58(2):469-80. PubMed ID: 21718788 [TBL] [Abstract][Full Text] [Related]
8. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier. Mehta SD; Sebro R J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114 [TBL] [Abstract][Full Text] [Related]
9. Binary classification of ¹⁸F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Vandenberghe R; Nelissen N; Salmon E; Ivanoiu A; Hasselbalch S; Andersen A; Korner A; Minthon L; Brooks DJ; Van Laere K; Dupont P Neuroimage; 2013 Jan; 64():517-25. PubMed ID: 22982358 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data. Song S; Zhan Z; Long Z; Zhang J; Yao L PLoS One; 2011 Feb; 6(2):e17191. PubMed ID: 21359184 [TBL] [Abstract][Full Text] [Related]
11. SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. Wottschel V; Chard DT; Enzinger C; Filippi M; Frederiksen JL; Gasperini C; Giorgio A; Rocca MA; Rovira A; De Stefano N; Tintoré M; Alexander DC; Barkhof F; Ciccarelli O; Neuroimage Clin; 2019; 24():102011. PubMed ID: 31734524 [TBL] [Abstract][Full Text] [Related]
13. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related]
14. Vicinal support vector classifier using supervised kernel-based clustering. Yang X; Cao A; Song Q; Schaefer G; Su Y Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294 [TBL] [Abstract][Full Text] [Related]
15. Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems. Casanova R; Hsu FC; Espeland MA; PLoS One; 2012; 7(10):e44877. PubMed ID: 23071501 [TBL] [Abstract][Full Text] [Related]
16. Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Mourão-Miranda J; Bokde AL; Born C; Hampel H; Stetter M Neuroimage; 2005 Dec; 28(4):980-95. PubMed ID: 16275139 [TBL] [Abstract][Full Text] [Related]
17. SVM and SVM Ensembles in Breast Cancer Prediction. Huang MW; Chen CW; Lin WC; Ke SW; Tsai CF PLoS One; 2017; 12(1):e0161501. PubMed ID: 28060807 [TBL] [Abstract][Full Text] [Related]
18. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions. Lee D; Yun S; Jang C; Park HJ PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830 [TBL] [Abstract][Full Text] [Related]
19. Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models. Conroy BR; Walz JM; Sajda P PLoS One; 2013; 8(11):e79271. PubMed ID: 24244465 [TBL] [Abstract][Full Text] [Related]
20. Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data. Mourao-Miranda J; Ecker C; Sato JR; Brammer M J Cogn Neurosci; 2009 May; 21(5):890-904. PubMed ID: 18702583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]