These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 21729770)

  • 1. Systemic inflammation impairs respiratory chemoreflexes and plasticity.
    Huxtable AG; Vinit S; Windelborn JA; Crader SM; Guenther CH; Watters JJ; Mitchell GS
    Respir Physiol Neurobiol; 2011 Sep; 178(3):482-9. PubMed ID: 21729770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders.
    Johnson RA; Mitchell GS
    Respir Physiol Neurobiol; 2013 Nov; 189(2):419-28. PubMed ID: 23727226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
    Hocker AD; Huxtable AG
    J Appl Physiol (1985); 2018 Aug; 125(2):504-512. PubMed ID: 29565772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of compensatory plasticity for respiratory motor neuron death.
    Seven YB; Mitchell GS
    Respir Physiol Neurobiol; 2019 Jul; 265():32-39. PubMed ID: 30625378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury.
    Lovett-Barr MR; Satriotomo I; Muir GD; Wilkerson JE; Hoffman MS; Vinit S; Mitchell GS
    J Neurosci; 2012 Mar; 32(11):3591-600. PubMed ID: 22423083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of inflammation on respiratory plasticity.
    Hocker AD; Stokes JA; Powell FL; Huxtable AG
    Exp Neurol; 2017 Jan; 287(Pt 2):243-253. PubMed ID: 27476100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
    Braegelmann KM; Streeter KA; Fields DP; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):225-234. PubMed ID: 27456270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invited review: Neural network plasticity in respiratory control.
    Morris KF; Baekey DM; Nuding SC; Dick TE; Shannon R; Lindsey BG
    J Appl Physiol (1985); 2003 Mar; 94(3):1242-52. PubMed ID: 12571145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
    Hormigo KM; Zholudeva LV; Spruance VM; Marchenko V; Cote MP; Vinit S; Giszter S; Bezdudnaya T; Lane MA
    Exp Neurol; 2017 Jan; 287(Pt 2):276-287. PubMed ID: 27582085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal metaplasticity in respiratory motor control.
    Fields DP; Mitchell GS
    Front Neural Circuits; 2015; 9():2. PubMed ID: 25717292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
    Agosto-Marlin IM; Nichols NL; Mitchell GS
    J Neurophysiol; 2018 Jun; 119(6):2176-2185. PubMed ID: 29513151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function.
    Dale EA; Ben Mabrouk F; Mitchell GS
    Physiology (Bethesda); 2014 Jan; 29(1):39-48. PubMed ID: 24382870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breathing patterns after mid-cervical spinal contusion in rats.
    Golder FJ; Fuller DD; Lovett-Barr MR; Vinit S; Resnick DK; Mitchell GS
    Exp Neurol; 2011 Sep; 231(1):97-103. PubMed ID: 21683697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity.
    Beyeler SA; Hodges MR; Huxtable AG
    Respir Physiol Neurobiol; 2020 Mar; 274():103357. PubMed ID: 31899353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis.
    Pamenter ME; Powell FL
    Compr Physiol; 2016 Jun; 6(3):1345-85. PubMed ID: 27347896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity in the control of breathing following sensory denervation.
    Forster HV
    J Appl Physiol (1985); 2003 Feb; 94(2):784-94. PubMed ID: 12531915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia.
    Bavis RW; Olson EB; Vidruk EH; Fuller DD; Mitchell GS
    J Physiol; 2004 Jun; 557(Pt 2):645-60. PubMed ID: 15020695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.