BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21729840)

  • 1. Virtual bench testing of new generation coronary stents.
    Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B
    EuroIntervention; 2011 Jul; 7(3):369-76. PubMed ID: 21729840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiobjective design optimisation of coronary stents.
    Pant S; Limbert G; Curzen NP; Bressloff NW
    Biomaterials; 2011 Nov; 32(31):7755-73. PubMed ID: 21821283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents.
    Pericevic I; Lally C; Toner D; Kelly DJ
    Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different stent designs on local hemodynamics in stented arteries.
    Balossino R; Gervaso F; Migliavacca F; Dubini G
    J Biomech; 2008; 41(5):1053-61. PubMed ID: 18215394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Our capricious vessels: The influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment.
    De Bock S; Iannaccone F; De Santis G; De Beule M; Mortier P; Verhegghe B; Segers P
    J Biomech; 2012 May; 45(8):1353-9. PubMed ID: 22483228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Finite element analysis of the mechanical property of the resistance to compressing of the coronary stent].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1008-12. PubMed ID: 17121342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stent expansion in curved vessel and their interactions: a finite element analysis.
    Wu W; Wang WQ; Yang DZ; Qi M
    J Biomech; 2007; 40(11):2580-5. PubMed ID: 17198706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramural stress increases exponentially with stent diameter: a stress threshold for neointimal hyperplasia.
    Ballyk PD
    J Vasc Interv Radiol; 2006 Jul; 17(7):1139-45. PubMed ID: 16868167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis.
    Zahedmanesh H; Lally C
    Med Biol Eng Comput; 2009 Apr; 47(4):385-93. PubMed ID: 19189146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stresses in peripheral arteries following stent placement: a finite element analysis.
    Early M; Lally C; Prendergast PJ; Kelly DJ
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):25-33. PubMed ID: 18821189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence tomography at follow-up after percutaneous coronary intervention: relationship between procedural dissections, stent strut malapposition and stent healing.
    Radu M; Jørgensen E; Kelbæk H; Helqvist S; Skovgaard L; Saunamäki K
    EuroIntervention; 2011 Jul; 7(3):353-61. PubMed ID: 21729838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A predictive study of the mechanical behaviour of coronary stents by computer modelling.
    Migliavacca F; Petrini L; Montanari V; Quagliana I; Auricchio F; Dubini G
    Med Eng Phys; 2005 Jan; 27(1):13-8. PubMed ID: 15604000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of longitudinal stent deformation in a patient-specific coronary artery.
    Ragkousis GE; Curzen N; Bressloff NW
    Med Eng Phys; 2014 Apr; 36(4):467-76. PubMed ID: 24613503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and experimental observation of contact conditions between stents and artery models.
    Takashima K; Kitou T; Mori K; Ikeuchi K
    Med Eng Phys; 2007 Apr; 29(3):326-35. PubMed ID: 16731021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion and drug elution model of a coronary stent.
    Migliavacca F; Gervaso F; Prosi M; Zunino P; Minisini S; Formaggia L; Dubini G
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):63-73. PubMed ID: 18651272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of stent deployment in a realistic human coronary artery.
    Gijsen FJ; Migliavacca F; Schievano S; Socci L; Petrini L; Thury A; Wentzel JJ; van der Steen AF; Serruys PW; Dubini G
    Biomed Eng Online; 2008 Aug; 7():23. PubMed ID: 18684321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.