BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 2172987)

  • 1. Cytochrome c oxidase: decay of the primary oxygen intermediate involves direct electron transfer from cytochrome a.
    Han SH; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8408-12. PubMed ID: 2172987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appearance of the v(FeIV = O) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction.
    Varotsis C; Babcock GT
    Biochemistry; 1990 Aug; 29(32):7357-62. PubMed ID: 2171642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase.
    Hill BC; Greenwood C
    FEBS Lett; 1984 Jan; 166(2):362-6. PubMed ID: 6319198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of cytochrome c oxidase by hydrogen peroxide.
    Gorren AC; Dekker H; Wever R
    Biochim Biophys Acta; 1985 Aug; 809(1):90-6. PubMed ID: 2992583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.
    Bickar D; Turrens JF; Lehninger AL
    J Biol Chem; 1986 Nov; 261(31):14461-6. PubMed ID: 3021740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient kinetics of subunit-III-depleted cytochrome c oxidase.
    Malatesta F; Antonini G; Sarti P; Brunori M
    Biochem J; 1986 Mar; 234(3):569-72. PubMed ID: 3013160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance raman spectra of CN--bound cytochrome oxidase: spectral isolation of cytochromes a2+, a3(2+), and a3(2+)(CN-).
    Ching YC; Argade PV; Rousseau DL
    Biochemistry; 1985 Aug; 24(18):4938-46. PubMed ID: 3000419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary intermediate in the reaction of oxygen with fully reduced cytochrome c oxidase.
    Han SW; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2491-5. PubMed ID: 2157201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational switching at cytochrome a during steady-state turnover of cytochrome c oxidase.
    Copeland RA
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7281-3. PubMed ID: 1651500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c oxidase depleted of subunit III: proton-pumping, respiratory control, and pH dependence of the midpoint potential of cytochrome a.
    Thompson DA; Gregory L; Ferguson-Miller S
    J Inorg Biochem; 1985; 23(3-4):357-64. PubMed ID: 2410568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectroscopy of cytochrome oxidase using Soret excitation: selective enhancement, indicator bands, and structural significance for cytochromes a and a3.
    Woodruff WH; Dallinger RF; Antalis TM; Palmer G
    Biochemistry; 1981 Mar; 20(5):1332-8. PubMed ID: 6261789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nontraditional role for water in the cytochrome c oxidase reaction.
    Kornblatt JA; Hoa GH
    Biochemistry; 1990 Oct; 29(40):9370-6. PubMed ID: 2174258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover.
    Thörnström PE; Brzezinski P; Fredriksson PO; Malmström BG
    Biochemistry; 1988 Jul; 27(15):5441-7. PubMed ID: 2846037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of water near cytochrome a in cytochrome c oxidase.
    Rousseau DL; Sassaroli M; Ching YC; Dasgupta S
    Ann N Y Acad Sci; 1988; 550():223-37. PubMed ID: 2854395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrosyl cytochrome c oxidase. Formation and properties of mixed valence enzyme.
    Rousseau DL; Singh S; Ching YC; Sassaroli M
    J Biol Chem; 1988 Apr; 263(12):5681-5. PubMed ID: 2833509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time dependence of the catalytic intermediates in cytochrome c oxidase.
    Han S; Takahashi S; Rousseau DL
    J Biol Chem; 2000 Jan; 275(3):1910-9. PubMed ID: 10636892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of the cytochrome c oxidase reaction. Bound Fe(III) cytochrome c as an intermediate in the reductive half reaction.
    Petersen LC; Cox RP
    Eur J Biochem; 1980 Apr; 105(2):321-7. PubMed ID: 6247151
    [No Abstract]   [Full Text] [Related]  

  • 19. Flow-flash, time-resolved resonance Raman spectroscopy of the oxidation of reduced and of mixed valence cytochrome oxidase by dioxygen.
    Babcock GT; Jean JM; Johnston LN; Woodruff WH; Palmer G
    J Inorg Biochem; 1985; 23(3-4):243-51. PubMed ID: 2991463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer between cytochrome a and copper A in cytochrome c oxidase: a perturbed equilibrium study.
    Morgan JE; Li PM; Jang DJ; el-Sayed MA; Chan SI
    Biochemistry; 1989 Aug; 28(17):6975-83. PubMed ID: 2554962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.