BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 2172992)

  • 1. Mechanisms and experimental and epidemiological evidence relating dietary fibre (non-starch polysaccharides) and starch to protection against large bowel cancer.
    Bingham SA
    Proc Nutr Soc; 1990 Jul; 49(2):153-71. PubMed ID: 2172992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meat, starch and non-starch polysaccharides, are epidemiological and experimental findings consistent with acquired genetic alterations in sporadic colorectal cancer?
    Bingham S
    Cancer Lett; 1997 Mar; 114(1-2):25-34. PubMed ID: 9103247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemiology of dietary fibre and colorectal cancer: current status of the hypothesis.
    Bingham SA
    Nutr Health; 1985; 4(1):17-23. PubMed ID: 3010200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary fibre: its composition and role in protection against colorectal cancer.
    Harris PJ; Ferguson LR
    Mutat Res; 1993 Nov; 290(1):97-110. PubMed ID: 7694104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine.
    Sandberg AS; Andersson H; Hallgren B; Hasselblad K; Isaksson B; Hultén L
    Br J Nutr; 1981 Mar; 45(2):283-94. PubMed ID: 6260129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-starch polysaccharides as a protective factor in human large bowel cancer.
    Bingham SA
    Princess Takamatsu Symp; 1985; 16():183-92. PubMed ID: 3025162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal fibre usage in UC in remission.
    James SL; Christophersen CT; Bird AR; Conlon MA; Rosella O; Gibson PR; Muir JG
    Gut; 2015 Apr; 64(4):562-70. PubMed ID: 25037189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-relationship of microbial activity, digestion and gut health in the rabbit: effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides.
    Gidenne T; Jehl N; Lapanouse A; Segura M
    Br J Nutr; 2004 Jul; 92(1):95-104. PubMed ID: 15230992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet and colorectal cancer prevention.
    Bingham SA
    Biochem Soc Trans; 2000 Feb; 28(2):12-6. PubMed ID: 10816091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary roles of non-starch polysaccharides in human nutrition: a review.
    Kumar V; Sinha AK; Makkar HP; de Boeck G; Becker K
    Crit Rev Food Sci Nutr; 2012; 52(10):899-935. PubMed ID: 22747080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.
    Nielsen TS; Lærke HN; Theil PK; Sørensen JF; Saarinen M; Forssten S; Knudsen KE
    Br J Nutr; 2014 Dec; 112(11):1837-49. PubMed ID: 25327182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms.
    Williams EA; Coxhead JM; Mathers JC
    Proc Nutr Soc; 2003 Feb; 62(1):107-15. PubMed ID: 12740065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro fermentation of various fiber and starch sources by pig fecal inocula.
    Wang JF; Zhu YH; Li DF; Wang Z; Jensen BB
    J Anim Sci; 2004 Sep; 82(9):2615-22. PubMed ID: 15446478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk.
    Birkett AM; Jones GP; de Silva AM; Young GP; Muir JG
    Eur J Clin Nutr; 1997 Sep; 51(9):625-32. PubMed ID: 9306090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics.
    Bird AR; Conlon MA; Christophersen CT; Topping DL
    Benef Microbes; 2010 Nov; 1(4):423-31. PubMed ID: 21831780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Net energy value of non-starch polysaccharide isolates (sugarbeet fibre and commercial inulin) and their impact on nutrient digestive utilization in healthy human subjects.
    Castiglia-Delavaud C; Verdier E; Besle JM; Vernet J; Boirie Y; Beaufrere B; De Baynast R; Vermorel M
    Br J Nutr; 1998 Oct; 80(4):343-52. PubMed ID: 9924276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy balance and thermogenesis in rats consuming nonstarch polysaccharides of various fermentabilities.
    Smith T; Brown JC; Livesey G
    Am J Clin Nutr; 1998 Oct; 68(4):802-19. PubMed ID: 9771857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; Pérez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs.
    Govers MJ; Gannon NJ; Dunshea FR; Gibson PR; Muir JG
    Gut; 1999 Dec; 45(6):840-7. PubMed ID: 10562582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs.
    Jha R; Leterme P
    Animal; 2012 Apr; 6(4):603-11. PubMed ID: 22436276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.