These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21730074)
41. Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. Awrey DE; Weilbaecher RG; Hemming SA; Orlicky SM; Kane CM; Edwards AM J Biol Chem; 1997 Jun; 272(23):14747-54. PubMed ID: 9169440 [TBL] [Abstract][Full Text] [Related]
42. Crystal structure of the 14-subunit RNA polymerase I. Fernández-Tornero C; Moreno-Morcillo M; Rashid UJ; Taylor NM; Ruiz FM; Gruene T; Legrand P; Steuerwald U; Müller CW Nature; 2013 Oct; 502(7473):644-9. PubMed ID: 24153184 [TBL] [Abstract][Full Text] [Related]
43. Mechanism of RNA polymerase II stalling by DNA alkylation. Malvezzi S; Farnung L; Aloisi CMN; Angelov T; Cramer P; Sturla SJ Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12172-12177. PubMed ID: 29087308 [TBL] [Abstract][Full Text] [Related]
44. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Naji S; Bertero MG; Spitalny P; Cramer P; Thomm M Nucleic Acids Res; 2008 Feb; 36(2):676-87. PubMed ID: 18073196 [TBL] [Abstract][Full Text] [Related]
45. Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases. Ruprich-Robert G; Wery M; Després D; Boulard Y; Thuriaux P Curr Genet; 2011 Oct; 57(5):327-34. PubMed ID: 21761155 [TBL] [Abstract][Full Text] [Related]
46. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Pavlov YI; Shcherbakova PV; Kunkel TA Genetics; 2001 Sep; 159(1):47-64. PubMed ID: 11560886 [TBL] [Abstract][Full Text] [Related]
47. Yeast RNA polymerase II subunit RPB9. Mapping of domains required for transcription elongation. Hemming SA; Edwards AM J Biol Chem; 2000 Jan; 275(4):2288-94. PubMed ID: 10644677 [TBL] [Abstract][Full Text] [Related]
48. Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data. Meyer PA; Ye P; Suh MH; Zhang M; Fu J J Biol Chem; 2009 May; 284(19):12933-9. PubMed ID: 19289466 [TBL] [Abstract][Full Text] [Related]
49. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. Eichner J; Chen HT; Warfield L; Hahn S EMBO J; 2010 Feb; 29(4):706-16. PubMed ID: 20033062 [TBL] [Abstract][Full Text] [Related]
50. High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery. Chen BS; Mandal SS; Hampsey M Biochemistry; 2004 Oct; 43(40):12741-9. PubMed ID: 15461446 [TBL] [Abstract][Full Text] [Related]
51. Glutamic acid-371 of the barnase homology domain in RNA polymerase II is not required for SII-activated RNA cleavage. Powell W; Lennon JC; Elsevier JP; Reines D Mol Gen Genet; 1997 Jan; 253(4):507-11. PubMed ID: 9037112 [TBL] [Abstract][Full Text] [Related]
52. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity. Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911 [TBL] [Abstract][Full Text] [Related]
53. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. Kireeva ML; Opron K; Seibold SA; Domecq C; Cukier RI; Coulombe B; Kashlev M; Burton ZF BMC Biophys; 2012 Jun; 5():11. PubMed ID: 22676913 [TBL] [Abstract][Full Text] [Related]
54. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
55. Downstream DNA sequence effects on transcription elongation. Allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion. Holmes SF; Erie DA J Biol Chem; 2003 Sep; 278(37):35597-608. PubMed ID: 12813036 [TBL] [Abstract][Full Text] [Related]
56. The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. García-López MC; Pelechano V; Mirón-García MC; Garrido-Godino AI; García A; Calvo O; Werner M; Pérez-Ortín JE; Navarro F Genetics; 2011 Dec; 189(4):1235-48. PubMed ID: 21954159 [TBL] [Abstract][Full Text] [Related]
57. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Kang JJ; Auble DT; Ranish JA; Hahn S Mol Cell Biol; 1995 Mar; 15(3):1234-43. PubMed ID: 7862117 [TBL] [Abstract][Full Text] [Related]
58. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. Merkl PE; Pilsl M; Fremter T; Schwank K; Engel C; Längst G; Milkereit P; Griesenbeck J; Tschochner H J Biol Chem; 2020 Apr; 295(15):4782-4795. PubMed ID: 32060094 [TBL] [Abstract][Full Text] [Related]
59. p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo. Kim S; Balakrishnan SK; Gross DS PLoS One; 2011; 6(8):e22183. PubMed ID: 21829606 [TBL] [Abstract][Full Text] [Related]
60. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Wu X; Rossettini A; Hanes SD Genetics; 2003 Dec; 165(4):1687-702. PubMed ID: 14704159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]