BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21730290)

  • 1. Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy.
    Hainer SJ; Martens JA
    Mol Cell Biol; 2011 Sep; 31(17):3557-68. PubMed ID: 21730290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcription-dependent nucleosome occupancy of the SER3 promoter.
    Pruneski JA; Hainer SJ; Petrov KO; Martens JA
    Eukaryot Cell; 2011 Oct; 10(10):1283-94. PubMed ID: 21873510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intergenic transcription causes repression by directing nucleosome assembly.
    Hainer SJ; Pruneski JA; Mitchell RD; Monteverde RM; Martens JA
    Genes Dev; 2011 Jan; 25(1):29-40. PubMed ID: 21156811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II.
    Thebault P; Boutin G; Bhat W; Rufiange A; Martens J; Nourani A
    Mol Cell Biol; 2011 Mar; 31(6):1288-300. PubMed ID: 21220514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
    Gossett AJ; Lieb JD
    PLoS Genet; 2012; 8(6):e1002771. PubMed ID: 22737086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3.
    Ginsburg DS; Anlembom TE; Wang J; Patel SR; Li B; Hinnebusch AG
    J Biol Chem; 2014 Nov; 289(47):32656-70. PubMed ID: 25301943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Regulation of ECM3 Expression by Methylation of Histone H3 Lysine 4 and Intergenic Transcription in Saccharomyces cerevisiae.
    Raupach EA; Martens JA; Arndt KM
    G3 (Bethesda); 2016 Sep; 6(9):2971-81. PubMed ID: 27449519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
    Katan-Khaykovich Y; Struhl K
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1296-301. PubMed ID: 21220302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nucleosomal region important for ensuring proper interactions between the transcription elongation factor Spt16 and transcribed genes in Saccharomyces cerevisiae.
    Nguyen HT; Wharton W; Harper JA; Dornhoffer JR; Duina AA
    G3 (Bethesda); 2013 Jun; 3(6):929-40. PubMed ID: 23576521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of chaperone binding and nucleosome dynamics by key residues within the globular domain of histone H3.
    Hainer SJ; Martens JA
    Epigenetics Chromatin; 2016; 9():17. PubMed ID: 27134679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential contributions of histone H3 and H4 residues to heterochromatin structure.
    Yu Q; Olsen L; Zhang X; Boeke JD; Bi X
    Genetics; 2011 Jun; 188(2):291-308. PubMed ID: 21441216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Mutant Versions of the Spt16 Histone Chaperone That Are Defective for Transcription-Coupled Nucleosome Occupancy in Saccharomyces cerevisiae.
    Hainer SJ; Charsar BA; Cohen SB; Martens JA
    G3 (Bethesda); 2012 May; 2(5):555-67. PubMed ID: 22670226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone.
    McCullough L; Rawlins R; Olsen A; Xin H; Stillman DJ; Formosa T
    Genetics; 2011 Aug; 188(4):835-46. PubMed ID: 21625001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nucleosome surface formed by histone H4, H2A, and H3 residues is needed for proper histone H3 Lys36 methylation, histone acetylation, and repression of cryptic transcription.
    Du HN; Briggs SD
    J Biol Chem; 2010 Apr; 285(15):11704-13. PubMed ID: 20139424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly conserved region within H2B is important for FACT to act on nucleosomes.
    Zheng S; Crickard JB; Srikanth A; Reese JC
    Mol Cell Biol; 2014 Feb; 34(3):303-14. PubMed ID: 24248595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4.
    Du HN; Fingerman IM; Briggs SD
    Genes Dev; 2008 Oct; 22(20):2786-98. PubMed ID: 18923077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae.
    Martens JA; Wu PY; Winston F
    Genes Dev; 2005 Nov; 19(22):2695-704. PubMed ID: 16291644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae.
    He Q; Yu C; Morse RH
    Eukaryot Cell; 2008 Oct; 7(10):1649-60. PubMed ID: 18658255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II.
    Sathianathan A; Ravichandran P; Lippi JM; Cohen L; Messina A; Shaju S; Swede MJ; Ginsburg DS
    J Biol Chem; 2016 Sep; 291(40):21195-21207. PubMed ID: 27535225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae.
    Duina AA; Rufiange A; Bracey J; Hall J; Nourani A; Winston F
    Genetics; 2007 Sep; 177(1):101-12. PubMed ID: 17603125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.