These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21730359)

  • 1. Determination of tricresyl phosphate air contamination in aircraft.
    Denola G; Hanhela PJ; Mazurek W
    Ann Occup Hyg; 2011 Aug; 55(7):710-22. PubMed ID: 21730359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.
    Solbu K; Daae HL; Olsen R; Thorud S; Ellingsen DG; Lindgren T; Bakke B; Lundanes E; Molander P
    J Environ Monit; 2011 May; 13(5):1393-403. PubMed ID: 21399836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.
    Schindler BK; Weiss T; Schütze A; Koslitz S; Broding HC; Bünger J; Brüning T
    Arch Toxicol; 2013 Apr; 87(4):645-8. PubMed ID: 23179756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.
    De Nola G; Kibby J; Mazurek W
    J Chromatogr A; 2008 Jul; 1200(2):211-6. PubMed ID: 18550071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of fresh and used aircraft oil for the identification of toxic substances linked to aerotoxic syndrome.
    Megson D; Ortiz X; Jobst KJ; Reiner EJ; Mulder MF; Balouet JC
    Chemosphere; 2016 Sep; 158():116-23. PubMed ID: 27258902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tricresyl phosphate and the aerotoxic syndrome of flight crew members--current gaps in knowledge.
    de Boer J; Antelo A; van der Veen I; Brandsma S; Lammertse N
    Chemosphere; 2015 Jan; 119 Suppl():S58-61. PubMed ID: 24925093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders.
    Solbu K; Daae HL; Thorud S; Ellingsen DG; Lundanes E; Molander P
    J Environ Monit; 2010 Dec; 12(12):2259-68. PubMed ID: 20949195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healthy F-16 pilots show no evidence of exposure to tri-ortho-cresyl phosphate through the on-board oxygen generating system.
    Tacal O; Schopfer LM
    Chem Biol Interact; 2014 May; 215():69-74. PubMed ID: 24661946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.
    van Netten C; Leung V
    Appl Occup Environ Hyg; 2000 Mar; 15(3):277-83. PubMed ID: 10701290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.
    Liyasova M; Li B; Schopfer LM; Nachon F; Masson P; Furlong CE; Lockridge O
    Toxicol Appl Pharmacol; 2011 Nov; 256(3):337-47. PubMed ID: 21723309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.
    Schindler BK; Koslitz S; Weiss T; Broding HC; Brüning T; Bünger J
    Int J Hyg Environ Health; 2014 Jan; 217(1):34-7. PubMed ID: 23597959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of tricresyl phosphates and determination of tri-o-cresyl phosphate in edible oils.
    Krishnamurthy MN; Rajalakshmi S; Kapur OP
    J Assoc Off Anal Chem; 1985; 68(6):1074-6. PubMed ID: 4086427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a small personal air monitor and its application in aircraft.
    van Netten C
    Sci Total Environ; 2009 Jan; 407(3):1206-10. PubMed ID: 18801557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flying the smoky skies: secondhand smoke exposure of flight attendants.
    Repace J
    Tob Control; 2004 Mar; 13 Suppl 1(Suppl 1):i8-19. PubMed ID: 14985612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.
    de Ree H; van den Berg M; Brand T; Mulder GJ; Simons R; Veldhuijzen van Zanten B; Westerink RH
    Neurotoxicology; 2014 Dec; 45():209-15. PubMed ID: 25193069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023.
    Hageman G; van Broekhuizen P; Nihom J
    J Occup Environ Hyg; 2024; 21(6):423-438. PubMed ID: 38593380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.
    MacDonald RD; Thomas L; Rusk FC; Marques SD; McGuire D
    Prehosp Emerg Care; 2010; 14(2):202-8. PubMed ID: 20199234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature.
    Craig PH; Barth ML
    J Toxicol Environ Health B Crit Rev; 1999; 2(4):281-300. PubMed ID: 10596299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft.
    Michaelis S; Loraine T; Howard CV
    Environ Health; 2021 Aug; 20(1):89. PubMed ID: 34404396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the potential for transisomerisation of trycresyl phosphate with a palladium catalyst and its implications for aircraft cabin air quality.
    Megson D; Hajimirzaee S; Doyle A; Cannon F; Balouet JC
    Chemosphere; 2019 Jan; 215():532-534. PubMed ID: 30342398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.