These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21730378)

  • 1. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates.
    Wong CC; Agarwal A; Balasubramanian N; Kwong DL
    Nanotechnology; 2007 Apr; 18(13):135304. PubMed ID: 21730378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices.
    You JB; Min KI; Lee B; Kim DP; Im SG
    Lab Chip; 2013 Apr; 13(7):1266-72. PubMed ID: 23381132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices.
    Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK
    Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).
    Shang J; Chen B; Lin W; Wong CP; Zhang D; Xu C; Liu J; Huang QA
    Lab Chip; 2011 Apr; 11(8):1532-40. PubMed ID: 21387022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices.
    Ciftlik AT; Gijs MA
    Lab Chip; 2012 Jan; 12(2):396-400. PubMed ID: 22134687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure.
    Grate JW; Kelly RT; Suter J; Anheier NC
    Lab Chip; 2012 Nov; 12(22):4796-801. PubMed ID: 22995983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications.
    Mogensen KB; Gangloff L; Boggild P; Teo KB; Milne WI; Kutter JP
    Nanotechnology; 2009 Mar; 20(9):095503. PubMed ID: 19417490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coatings in microscale channels by atomic layer deposition.
    Gabriel NT; Talghader JJ
    Appl Opt; 2010 Mar; 49(8):1242-8. PubMed ID: 20220879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 degrees C.
    Howlader MM; Kibria MG; Zhang F; Kim MJ
    Talanta; 2010 Jul; 82(2):508-15. PubMed ID: 20602928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS Inverters on plastic.
    Lee M; Jeon Y; Moon T; Kim S
    ACS Nano; 2011 Apr; 5(4):2629-36. PubMed ID: 21355599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass microfabricated nebulizer chip for mass spectrometry.
    Saarela V; Haapala M; Kostiainen R; Kotiaho T; Franssila S
    Lab Chip; 2007 May; 7(5):644-6. PubMed ID: 17476387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS compatible fabrication of micro, nano convex silicon lens arrays by conformal chemical vapor deposition.
    Zuo H; Choi DY; Gai X; Luther-Davies B; Zhang B
    Opt Express; 2017 Feb; 25(4):3069-3076. PubMed ID: 28241523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications.
    Ari J; Louvet G; Ledemi Y; Célarié F; Morais S; Bureau B; Marre S; Nazabal V; Messaddeq Y
    Sci Technol Adv Mater; 2020; 21(1):11-24. PubMed ID: 32082440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers.
    Luais E; Boujtita M; Gohier A; Tailleur A; Casimirius S; Djouadi MA; Granier A; Tessier PY
    Nanotechnology; 2008 Oct; 19(43):435502. PubMed ID: 21832696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.