These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21730393)

  • 21. Investigation of the electronic transport in GaN nanowires containing GaN/AlN quantum discs.
    Rigutti L; Jacopin G; Bugallo Ade L; Tchernycheva M; Warde E; Julien FH; Songmuang R; Galopin E; Largeau L; Harmand JC
    Nanotechnology; 2010 Oct; 21(42):425206. PubMed ID: 20864782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes.
    Tanur AE; Wang J; Reddy AL; Lamont DN; Yap YK; Walker GC
    J Phys Chem B; 2013 Apr; 117(16):4618-25. PubMed ID: 23350827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires.
    Kouhpanji MRZ; Behzadirad M; Feezell D; Busani T
    Nanotechnology; 2018 May; 29(20):205706. PubMed ID: 29473824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual force sensing with flexible nanowire buckling springs.
    Dobrokhotov VV; Yazdanpanah MM; Pabba S; Safir A; Cohn RW
    Nanotechnology; 2008 Jan; 19(3):035502. PubMed ID: 21817570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires.
    Gordon MJ; Baron T; Dhalluin F; Gentile P; Ferret P
    Nano Lett; 2009 Feb; 9(2):525-9. PubMed ID: 19159318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical and field emission properties of thin single-crystalline GaN nanowires.
    Ha B; Seo SH; Cho JH; Yoon CS; Yoo J; Yi GC; Park CY; Lee CJ
    J Phys Chem B; 2005 Jun; 109(22):11095-9. PubMed ID: 16852353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic growth and characterization of gallium nitride nanowires.
    Chen CC; Yeh CC; Chen CH; Yu MY; Liu HL; Wu JJ; Chen KH; Chen LC; Peng JY; Chen YF
    J Am Chem Soc; 2001 Mar; 123(12):2791-8. PubMed ID: 11456965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled synthesis of ultrathin ZnO nanowires using micellar gold nanoparticles as catalyst templates.
    Yin H; Wang Q; Geburt S; Milz S; Ruttens B; Degutis G; D'Haen J; Shan L; Punniyakoti S; D'Olieslaeger M; Wagner P; Ronning C; Boyen HG
    Nanoscale; 2013 Aug; 5(15):7046-53. PubMed ID: 23807664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanowires as semi-rigid substrates for growth of thick, In(x)Ga(1-x)N (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting.
    Pendyala C; Jasinski JB; Kim JH; Vendra VK; Lisenkov S; Menon M; Sunkara MK
    Nanoscale; 2012 Oct; 4(20):6269-75. PubMed ID: 22968333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical Characterization of Two-Segment Free-Standing ZnO Nanowires Using Lateral Force Microscopy.
    Volk J; Radó J; Baji Z; Erdélyi R
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
    Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M
    Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties of microwave hydrothermally synthesized titanate nanowires.
    Chang M; Chung CC; Deka JR; Lin CH; Chung TW
    Nanotechnology; 2008 Jan; 19(2):025710. PubMed ID: 21817559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization and field-emission properties of bamboo-like beta-SiC nanowires.
    Shen G; Bando Y; Ye C; Liu B; Golberg D
    Nanotechnology; 2006 Jul; 17(14):3468-72. PubMed ID: 19661591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of surface defects on the mechanical properties of ZnO nanowires.
    Roy A; Mead J; Wang S; Huang H
    Sci Rep; 2017 Aug; 7(1):9547. PubMed ID: 28842690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elasticity size effects in ZnO nanowires--a combined experimental-computational approach.
    Agrawal R; Peng B; Gdoutos EE; Espinosa HD
    Nano Lett; 2008 Nov; 8(11):3668-74. PubMed ID: 18839998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of crystal structure on the Young's modulus of GaP nanowires.
    Alekseev PA; Borodin BR; Geydt P; Khayrudinov V; Bespalova K; Kirilenko DA; Reznik RR; Nashchekin AV; Haggrén T; Lähderanta E; Cirlin GE; Lipsanen H; Dunaevskiy MS
    Nanotechnology; 2021 Jul; 32(38):. PubMed ID: 34116523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.
    Guhados G; Wan W; Hutter JL
    Langmuir; 2005 Jul; 21(14):6642-6. PubMed ID: 15982078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of surface and initial stresses on the bending stiffness of nanowires.
    Zhu HX
    Nanotechnology; 2008 Oct; 19(40):405703. PubMed ID: 21832632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires.
    Tang C; Dávila LP
    Nanotechnology; 2014 Oct; 25(43):435702. PubMed ID: 25298024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.