These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21730402)

  • 1. A nanoscale three-dimensional Monte Carlo simulation of electron-beam-induced deposition with gas dynamics.
    Smith DA; Fowlkes JD; Rack PD
    Nanotechnology; 2007 Jul; 18(26):265308. PubMed ID: 21730402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the effects of surface diffusion on electron beam induced deposition via a three-dimensional Monte Carlo simulation.
    Smith DA; Fowlkes JD; Rack PD
    Nanotechnology; 2008 Oct; 19(41):415704. PubMed ID: 21832655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the kinetics and nanoscale morphology of electron-beam-induced deposition via a three-dimensional Monte Carlo simulation: the effects of the precursor molecule and the deposited material.
    Smith DA; Fowlkes JD; Rack PD
    Small; 2008 Sep; 4(9):1382-9. PubMed ID: 18720436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental electron-precursor-solid interactions derived from time-dependent electron-beam-induced deposition simulations and experiments.
    Fowlkes JD; Rack PD
    ACS Nano; 2010 Mar; 4(3):1619-29. PubMed ID: 20201541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Monte Carlo simulation on the electron-beam-induced deposition of carbon, silver, and tungsten supertips.
    Liu ZQ; Mitsuishi K; Furuya K
    Microsc Microanal; 2006 Dec; 12(6):549-52. PubMed ID: 19830948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of focused helium ion beam induced deposition.
    Smith DA; Joy DC; Rack PD
    Nanotechnology; 2010 Apr; 21(17):175302. PubMed ID: 20357409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopillar growth by focused helium ion-beam-induced deposition.
    Chen P; van Veldhoven E; Sanford CA; Salemink HW; Maas DJ; Smith DA; Rack PD; Alkemade PF
    Nanotechnology; 2010 Nov; 21(45):455302. PubMed ID: 20947951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure effect of growing with electron beam-induced deposition with tungsten hexafluoride and tetraethylorthosilicate precursor.
    Choi YR; Rack PD; Randolph SJ; Smith DA; Joy DC
    Scanning; 2006; 28(6):311-8. PubMed ID: 17181132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New modeling of scattering behaviors of argon atoms on tungsten substrate.
    Leu TS; Cheng CH; Ozhgibesov MS
    J Mol Graph Model; 2011 Nov; 31():35-40. PubMed ID: 21900027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.
    Timilsina R; Smith DA; Rack PD
    Nanotechnology; 2013 Mar; 24(11):115302. PubMed ID: 23449368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution radially symmetric nanostructures from simultaneous electron beam induced etching and deposition.
    Lobo CJ; Toth M; Wagner R; Thiel BL; Lysaght M
    Nanotechnology; 2008 Jan; 19(2):025303. PubMed ID: 21817540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon.
    Rykaczewski K; Hildreth OJ; Kulkarni D; Henry MR; Kim SK; Wong CP; Tsukruk VV; Fedorov AG
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):969-73. PubMed ID: 20356053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional metallic tungsten nanowire network fabricated by electron-beam-induced deposition.
    Chen CL; Arakawa K; Mori H
    Nanotechnology; 2010 Jul; 21(28):285304. PubMed ID: 20562484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electron beam-induced deposition and etching under bias.
    Choi YR; Rack PD; Frost B; Joy DC
    Scanning; 2007; 29(4):171-6. PubMed ID: 17598177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale lithography via electron beam induced deposition.
    Guan Y; Fowlkes JD; Retterer ST; Simpson ML; Rack PD
    Nanotechnology; 2008 Dec; 19(50):505302. PubMed ID: 19942766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100).
    Schirmer M; Walz MM; Vollnhals F; Lukasczyk T; Sandmann A; Chen C; Steinrück HP; Marbach H
    Nanotechnology; 2011 Feb; 22(8):085301. PubMed ID: 21242619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic growth of carbon nanopillars and microrings in electron beam induced dissociation of residual hydrocarbons.
    Rykaczewski K; Marshall A; White WB; Fedorov AG
    Ultramicroscopy; 2008 Aug; 108(9):989-92. PubMed ID: 18554805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of electron scattering in electron-induced surface chemistry.
    van Dorp WF
    Phys Chem Chem Phys; 2012 Dec; 14(48):16753-9. PubMed ID: 23147263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of electron transport during electron-beam-induced deposition of nanostructures.
    Salvat-Pujol F; Jeschke HO; Valentí R
    Beilstein J Nanotechnol; 2013; 4():781-92. PubMed ID: 24367747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-Beam-Induced Deposition as a Technique for Analysis of Precursor Molecule Diffusion Barriers and Prefactors.
    Cullen J; Lobo CJ; Ford MJ; Toth M
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21408-15. PubMed ID: 26340502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.