These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21730404)

  • 1. Electronic and atomic shell structure in aluminium nanowires.
    Mares AI; Urban DF; Bürki J; Grabert H; Stafford CA; van Ruitenbeek JM
    Nanotechnology; 2007 Jul; 18(26):265403. PubMed ID: 21730404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jahn-Teller distortions and the supershell effect in metal nanowires.
    Urban DF; Bürki J; Zhang CH; Stafford CA; Grabert H
    Phys Rev Lett; 2004 Oct; 93(18):186403. PubMed ID: 15525187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossover from electronic to atomic shell structure in alkali metal nanowires.
    Yanson AI; Yanson IK; van Ruitenbeek JM
    Phys Rev Lett; 2001 Nov; 87(21):216805. PubMed ID: 11736365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of ballistic gold conductor using ultra-high-vacuum transmission electron microscopy.
    Oshima Y
    J Electron Microsc (Tokyo); 2012 Jun; 61(3):133-44. PubMed ID: 22434562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-size metallic conductors.
    van Ruitenbeek JM
    Naturwissenschaften; 2001 Feb; 88(2):59-66. PubMed ID: 11320889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires.
    Obermair C; Kuhn H; Schimmel T
    Beilstein J Nanotechnol; 2011; 2():740-5. PubMed ID: 22259756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic shell and subshell structures in aluminum and gold nanocontacts.
    Medina E; Díaz M; León N; Guerrero C; Hasmy A; Serena PA; Costa-Krämer JL
    Phys Rev Lett; 2003 Jul; 91(2):026802. PubMed ID: 12906499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of magic cluster stability in ultra-thin semiconductor nanorods.
    Sangthong W; Limtrakul J; Illas F; Bromley ST
    Nanoscale; 2010 Jan; 2(1):72-7. PubMed ID: 20648366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Magic' nucleus 42Si.
    Fridmann J; Wiedenhöver I; Gade A; Baby LT; Bazin D; Brown BA; Campbell CM; Cook JM; Cottle PD; Diffenderfer E; Dinca DC; Glasmacher T; Hansen PG; Kemper KW; Lecouey JL; Mueller WF; Olliver H; Rodriguez-Vieitez E; Terry JR; Tostevin JA; Yoneda K
    Nature; 2005 Jun; 435(7044):922-4. PubMed ID: 15959511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of polypyrrole coated copper nanowires: a new concept to engineered core-shell structures.
    Liu Y; Liu Z; Lu N; Preiss E; Poyraz S; Kim MJ; Zhang X
    Chem Commun (Camb); 2012 Mar; 48(20):2621-3. PubMed ID: 22294152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supershell structure in alkali metal nanowires.
    Yanson AI; Yanson IK; van Ruitenbeek JM
    Phys Rev Lett; 2000 Jun; 84(25):5832-5. PubMed ID: 10991066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on the atomic arrangement and conductance of atomic-size gold nanowires generated by mechanical stretching.
    Lagos MJ; Sato F; Autreto PA; Galvão DS; Rodrigues V; Ugarte D
    Nanotechnology; 2010 Dec; 21(48):485702. PubMed ID: 21063051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias dependent crossover from variable range hopping to power law characteristics in the resistivity of polymer nanowires.
    Rahman A; Sanyal MK
    J Phys Condens Matter; 2010 May; 22(17):175301. PubMed ID: 21393667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.
    Hassanien R; Al-Said SA; Siller L; Little R; Wright NG; Houlton A; Horrocks BR
    Nanotechnology; 2012 Feb; 23(7):075601. PubMed ID: 22261265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shell and subshell periodic structures of icosahedral nickel nanoclusters.
    Zhang Z; Hu W; Xiao S
    J Chem Phys; 2005 Jun; 122(21):214501. PubMed ID: 15974748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay of Rayleigh and Peierls instabilities in metallic nanowires.
    Urban DF; Grabert H
    Phys Rev Lett; 2003 Dec; 91(25):256803. PubMed ID: 14754137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam.
    Inkson BJ; Dehm G; Wagner T
    J Microsc; 2004 Jun; 214(Pt 3):252-60. PubMed ID: 15157193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.