These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21730424)

  • 1. Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing.
    Senthil K; Yong K
    Nanotechnology; 2007 Oct; 18(39):395604. PubMed ID: 21730424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil.
    Xu F; Fahmi A; Zhao Y; Xia Y; Zhu Y
    Nanoscale; 2012 Nov; 4(22):7031-7. PubMed ID: 23044698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of WO3 nanorods by reacting WO(OMe)4 under autogenic pressure at elevated temperature followed by annealing.
    Pol SV; Pol VG; Kessler VG; Seisenbaeva GA; Solovyov LA; Gedanken A
    Inorg Chem; 2005 Dec; 44(26):9938-45. PubMed ID: 16363865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter control of tungsten oxide nanowires as grown by thermal evaporation.
    Hong K; Xie M; Hu R; Wu H
    Nanotechnology; 2008 Feb; 19(8):085604. PubMed ID: 21730728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance.
    Lin F; Li CP; Chen G; Tenent RC; Wolden CA; Gillaspie DT; Dillon AC; Richards RM; Engtrakul C
    Nanotechnology; 2012 Jun; 23(25):255601. PubMed ID: 22653083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol-assisted chemical vapor deposition of tungsten oxide films and nanorods from oxo tungsten(VI) fluoroalkoxide precursors.
    Kim H; Bonsu RO; O'Donohue C; Korotkov RY; McElwee-White L; Anderson TJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2660-7. PubMed ID: 25569472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of tungsten with CeO2(111) layers as a function of temperature: a photoelectron spectroscopy study.
    Skála T; Tsud N; Prince KC; Matolín V
    J Phys Condens Matter; 2011 Jun; 23(21):215001. PubMed ID: 21555841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Novel Double-Layer Nanostructures of SiC-WO(x) by a Two Step Thermal Evaporation Process.
    Kim H; Senthil K; Yong K
    Nanoscale Res Lett; 2009 Apr; 4(8):802-808. PubMed ID: 20596292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tungsten oxide films by reactive and conventional evaporation techniques.
    Demiryont H; Nietering KE
    Appl Opt; 1989 Apr; 28(8):1494-500. PubMed ID: 20548685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bundled tungsten oxide nanowires under thermal processing.
    Sun S; Zhao Y; Xia Y; Zou Z; Min G; Zhu Y
    Nanotechnology; 2008 Jul; 19(30):305709. PubMed ID: 21828776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation.
    Umar A; Karunagaran B; Suh EK; Hahn YB
    Nanotechnology; 2006 Aug; 17(16):4072-7. PubMed ID: 21727540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films.
    Vemuri RS; Engelhard MH; Ramana CV
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1371-7. PubMed ID: 22332637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating n-pentane isomerization activity to the tungsten surface density of WO(x)/ZrO2.
    Soultanidis N; Zhou W; Psarras AC; Gonzalez AJ; Iliopoulou EF; Kiely CJ; Wachs IE; Wong MS
    J Am Chem Soc; 2010 Sep; 132(38):13462-71. PubMed ID: 20815386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions.
    Huang P; Kalyar MM; Webster RF; Cherns D; Ashfold MN
    Nanoscale; 2014 Nov; 6(22):13586-97. PubMed ID: 25268109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of MgO nanorods coated with SnO2.
    Kim H; Jin C; Kim HW; Lee C
    J Nanosci Nanotechnol; 2012 May; 12(5):4181-4. PubMed ID: 22852368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties.
    Guo C; Yin S; Huang Y; Dong Q; Sato T
    Langmuir; 2011 Oct; 27(19):12172-8. PubMed ID: 21870876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge.
    Fang F; Kennedy J; Futter J; Hopf T; Markwitz A; Manikandan E; Henshaw G
    Nanotechnology; 2011 Aug; 22(33):335702. PubMed ID: 21778569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.
    Chu WG; Wang HF; Guo YJ; Zhang LN; Han ZH; Li QQ; Fan SS
    Inorg Chem; 2009 Feb; 48(3):1243-9. PubMed ID: 19128151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor-liquid-solid technique.
    Kar A; Yang J; Dutta M; Stroscio MA; Kumari J; Meyyappan M
    Nanotechnology; 2009 Feb; 20(6):065704. PubMed ID: 19417398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.