These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21730453)

  • 1. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.
    Kalinin SV; Rodriguez BJ; Jesse S; Seal K; Proksch R; Hohlbauch S; Revenko I; Thompson GL; Vertegel AA
    Nanotechnology; 2007 Oct; 18(42):424020. PubMed ID: 21730453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency electromechanical imaging of ferroelectrics in a liquid environment.
    Balke N; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Jun; 6(6):5559-65. PubMed ID: 22571634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromechanical imaging of biomaterials by scanning probe microscopy.
    Rodriguez BJ; Kalinin SV; Shin J; Jesse S; Grichko V; Thundat T; Baddorf AP; Gruverman A
    J Struct Biol; 2006 Feb; 153(2):151-9. PubMed ID: 16403652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing local electromechanical effects in highly conductive electrolytes.
    Balke N; Tselev A; Arruda TM; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Nov; 6(11):10139-46. PubMed ID: 23106854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments.
    Cui A; Wolf P; Ye Y; Hu Z; Dujardin A; Huang Z; Jiang K; Shang L; Ye M; Sun H; Chu J
    Nanotechnology; 2019 Jun; 30(23):235701. PubMed ID: 30780144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
    Rodriguez BJ; Jesse S; Baddorf AP; Kalinin SV
    Phys Rev Lett; 2006 Jun; 96(23):237602. PubMed ID: 16803404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution imaging of proteins in human teeth by scanning probe microscopy.
    Gruverman A; Wu D; Rodriguez BJ; Kalinin SV; Habelitz S
    Biochem Biophys Res Commun; 2007 Jan; 352(1):142-6. PubMed ID: 17112467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-layer mediated electromechanical response of amyloid fibrils in liquid environment.
    Nikiforov MP; Thompson GL; Reukov VV; Jesse S; Guo S; Rodriguez BJ; Seal K; Vertegel AA; Kalinin SV
    ACS Nano; 2010 Feb; 4(2):689-98. PubMed ID: 20088597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy.
    Balke N; Maksymovych P; Jesse S; Herklotz A; Tselev A; Eom CB; Kravchenko II; Yu P; Kalinin SV
    ACS Nano; 2015 Jun; 9(6):6484-92. PubMed ID: 26035634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy.
    Uršič H; Prah U
    Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180782. PubMed ID: 31007554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromechanical coupling and temperature-dependent polarization reversal in piezoelectric ceramics.
    Weaver PM; Cain MG; Correia TM; Stewart M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1730-6. PubMed ID: 21937304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects.
    Kim Y; Kumar A; Tselev A; Kravchenko II; Han H; Vrejoiu I; Lee W; Hesse D; Alexe M; Kalinin SV; Jesse S
    ACS Nano; 2011 Nov; 5(11):9104-12. PubMed ID: 21955139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.
    Minary-Jolandan M; Yu MF
    ACS Nano; 2009 Jul; 3(7):1859-63. PubMed ID: 19505115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-hierarchical structure and electromechanical coupling properties of clamshell.
    Li T; Zeng K
    J Struct Biol; 2012 Oct; 180(1):73-83. PubMed ID: 22728529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.