These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21730510)
1. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Wang Q; Wang CM Nanotechnology; 2007 Feb; 18(7):075702. PubMed ID: 21730510 [TBL] [Abstract][Full Text] [Related]
2. Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Heireche H; Tounsi A; Benzair A Nanotechnology; 2008 May; 19(18):185703. PubMed ID: 21825699 [TBL] [Abstract][Full Text] [Related]
3. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103 [TBL] [Abstract][Full Text] [Related]
4. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'. Tounsi A; Heireche H; Benzair A; Mechab I J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479 [TBL] [Abstract][Full Text] [Related]
5. Application of nonlocal models to nano beams. Part I: Axial length scale effect. Kim JS J Nanosci Nanotechnol; 2014 Oct; 14(10):7592-6. PubMed ID: 25942831 [TBL] [Abstract][Full Text] [Related]
6. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Khosravian N; Rafii-Tabar H Nanotechnology; 2008 Jul; 19(27):275703. PubMed ID: 21828715 [TBL] [Abstract][Full Text] [Related]
7. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses. Wang X; Hopkins C J Acoust Soc Am; 2016 Oct; 140(4):2312. PubMed ID: 27794356 [TBL] [Abstract][Full Text] [Related]
8. Abnormal nonlocal scale effect on static bending of single-layer MoS Li M; Huang H; Tu L; Wang W; Li P; Lu Y Nanotechnology; 2017 May; 28(21):215706. PubMed ID: 28333686 [TBL] [Abstract][Full Text] [Related]
9. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes. Huang K; Xu W Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089 [TBL] [Abstract][Full Text] [Related]
10. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Gao Y; Lei FM Biochem Biophys Res Commun; 2009 Sep; 387(3):467-71. PubMed ID: 19615341 [TBL] [Abstract][Full Text] [Related]
11. The small length scale effect for a non-local cantilever beam: a paradox solved. Challamel N; Wang CM Nanotechnology; 2008 Aug; 19(34):345703. PubMed ID: 21730658 [TBL] [Abstract][Full Text] [Related]
12. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Adali S Nano Lett; 2009 May; 9(5):1737-41. PubMed ID: 19344117 [TBL] [Abstract][Full Text] [Related]
13. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408 [TBL] [Abstract][Full Text] [Related]
14. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Ghavanloo E; Fazelzadeh SA Nanotechnology; 2013 Feb; 24(7):075702. PubMed ID: 23358570 [TBL] [Abstract][Full Text] [Related]
15. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory. De Rosa MA; Lippiello M ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807 [TBL] [Abstract][Full Text] [Related]
16. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes. Hu YG; Liew KM; Wang Q J Nanosci Nanotechnol; 2011 Dec; 11(12):10401-7. PubMed ID: 22408916 [TBL] [Abstract][Full Text] [Related]
17. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory. Eshraghi I; Jalali SK; Pugno NM Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911 [TBL] [Abstract][Full Text] [Related]
18. Flexural Wave Propagation in Mass Chain-Filled Carbon Nanotubes. Liu R; Zhao J; Wang L Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540170 [TBL] [Abstract][Full Text] [Related]
19. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Li XF; Tang GJ; Shen ZB; Lee KY Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195 [TBL] [Abstract][Full Text] [Related]
20. Application of nonlocal models to nano beams. Part II: Thickness length scale effect. Kim JS J Nanosci Nanotechnol; 2014 Oct; 14(10):7597-602. PubMed ID: 25942832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]