These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21730517)

  • 1. Determination of the natural frequency of a cantilevered ZnO nanowire resonantly excited by a sinusoidal electric field.
    Shi Y; Chen CQ; Zhang YS; Zhu J; Yan YJ
    Nanotechnology; 2007 Feb; 18(7):075709. PubMed ID: 21730517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.
    Qin Q; Xu F; Cao Y; Ro PI; Zhu Y
    Small; 2012 Aug; 8(16):2571-6. PubMed ID: 22619003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors that determine and limit the resistivity of high-quality individual ZnO nanowires.
    Lord AM; Maffeis TG; Walton AS; Kepaptsoglou DM; Ramasse QM; Ward MB; Köble J; Wilks SP
    Nanotechnology; 2013 Nov; 24(43):435706. PubMed ID: 24107476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Templated one step electrodeposition of high aspect ratio n-type ZnO nanowire arrays.
    Sharma SK; Rammohan A; Sharma A
    J Colloid Interface Sci; 2010 Apr; 344(1):1-9. PubMed ID: 20089257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.
    Subannajui K; Güder F; Danhof J; Menzel A; Yang Y; Kirste L; Wang C; Cimalla V; Schwarz U; Zacharias M
    Nanotechnology; 2012 Jun; 23(23):235607. PubMed ID: 22609898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation.
    Lu MY; Song J; Lu MP; Lee CY; Chen LJ; Wang ZL
    ACS Nano; 2009 Feb; 3(2):357-62. PubMed ID: 19236072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature.
    Deng SZ; Fan HM; Wang M; Zheng MR; Yi JB; Wu RQ; Tan HR; Sow CH; Ding J; Feng YP; Loh KP
    ACS Nano; 2010 Jan; 4(1):495-505. PubMed ID: 20028113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays.
    Lee M; Yong K
    Nanotechnology; 2012 May; 23(19):194014. PubMed ID: 22538200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
    Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M
    Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays.
    Azizur-Rahman KM; LaPierre RR
    Nanotechnology; 2015 Jul; 26(29):295202. PubMed ID: 26134509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells.
    Wong DK; Ku CH; Chen YR; Chen GR; Wu JJ
    Chemphyschem; 2009 Oct; 10(15):2698-702. PubMed ID: 19777522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GaN nanowire arrays for high-output nanogenerators.
    Huang CT; Song J; Lee WF; Ding Y; Gao Z; Hao Y; Chen LJ; Wang ZL
    J Am Chem Soc; 2010 Apr; 132(13):4766-71. PubMed ID: 20218713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative fitting of nonlinear current-voltage curves and parameter retrieval of semiconducting nanowire, nanotube and nanoribbon devices.
    Liu Y; Zhang ZY; Hu YF; Jin CH; Peng LM
    J Nanosci Nanotechnol; 2008 Jan; 8(1):252-8. PubMed ID: 18468068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric nanogenerators based on zinc oxide nanowire arrays.
    Wang ZL; Song J
    Science; 2006 Apr; 312(5771):242-6. PubMed ID: 16614215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of enhanced cathodoluminescence emissions from ZnO nanocones compared with ZnO nanowire arrays.
    Bae J; Shim EL; Park Y; Kim H; Kim JM; Kang CJ; Choi YJ
    Nanotechnology; 2011 Jul; 22(28):285711. PubMed ID: 21659688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ZnO nanowire vacuum pressure sensor.
    Chang SJ; Hsueh TJ; Hsu CL; Lin YR; Chen IC; Huang BR
    Nanotechnology; 2008 Mar; 19(9):095505. PubMed ID: 21817672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust determination of Young's modulus of individual carbon nanotubes by quasi-static interaction with Lorentz forces.
    Löffler M; Weissker U; Mühl T; Gemming T; Büchner B
    Ultramicroscopy; 2011 Jan; 111(2):155-8. PubMed ID: 21185460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy in mechanical measurements of single nanowires.
    Pruchnik BC; Fidelus JD; Gacka E; Mika K; Zaraska L; Sulka GD; Gotszalk TP
    Ultramicroscopy; 2024 Sep; 263():113985. PubMed ID: 38759603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire.
    Khaderbad MA; Choi Y; Hiralal P; Aziz A; Wang N; Durkan C; Thiruvenkatanathan P; Amaratunga GA; Rao VR; Seshia AA
    Nanotechnology; 2012 Jan; 23(2):025501. PubMed ID: 22166842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.