These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 21730517)
21. Fabrication and characterization of flower-like CuO-ZnO heterostructure nanowire arrays by photochemical deposition. Jung S; Jeon S; Yong K Nanotechnology; 2011 Jan; 22(1):015606. PubMed ID: 21135458 [TBL] [Abstract][Full Text] [Related]
22. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Lin SS; Song JH; Lu YF; Wang ZL Nanotechnology; 2009 Sep; 20(36):365703. PubMed ID: 19687547 [TBL] [Abstract][Full Text] [Related]
23. Massive assembly of ZnO nanowire-based integrated devices. Kang J; Myung S; Kim B; Oh D; Kim GT; Hong S Nanotechnology; 2008 Mar; 19(9):095303. PubMed ID: 21817667 [TBL] [Abstract][Full Text] [Related]
24. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935 [TBL] [Abstract][Full Text] [Related]
25. Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by Hsia FC; Tang DM; Jevasuwan W; Fukata N; Zhou X; Mitome M; Bando Y; Nordling TEM; Golberg D Nanoscale Adv; 2019 May; 1(5):1784-1790. PubMed ID: 36134225 [TBL] [Abstract][Full Text] [Related]
26. Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template. Kovtyukhova NI; Mallouk TE Nanoscale; 2011 Apr; 3(4):1541-52. PubMed ID: 21279193 [TBL] [Abstract][Full Text] [Related]
27. A Facile One-Step Approach for Constructing Multidimensional Ordered Nanowire Micropatterns via Fibrous Elastocapillary Coalescence. Bian R; Meng L; Guo C; Tang Z; Liu H Adv Mater; 2019 May; 31(18):e1900534. PubMed ID: 30882936 [TBL] [Abstract][Full Text] [Related]
28. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Poncharal P; Wang ZL; Ugarte D; de Heer WA Science; 1999 Mar; 283(5407):1513-6. PubMed ID: 10066169 [TBL] [Abstract][Full Text] [Related]
29. Bioinspired preparation of ultrathin SiO(2) shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity. Wang L; Zhang X; Fu Y; Li B; Liu Y Langmuir; 2009 Dec; 25(23):13619-24. PubMed ID: 19606837 [TBL] [Abstract][Full Text] [Related]
30. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. Alber I; Sigle W; Müller S; Neumann R; Picht O; Rauber M; van Aken PA; Toimil-Molares ME ACS Nano; 2011 Dec; 5(12):9845-53. PubMed ID: 22077953 [TBL] [Abstract][Full Text] [Related]
31. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. He JH; Lao CS; Chen LJ; Davidovic D; Wang ZL J Am Chem Soc; 2005 Nov; 127(47):16376-7. PubMed ID: 16305207 [TBL] [Abstract][Full Text] [Related]
32. Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt. He JH; Chang PH; Chen CY; Tsai KT Nanotechnology; 2009 Apr; 20(13):135701. PubMed ID: 19420510 [TBL] [Abstract][Full Text] [Related]
34. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Ni H; Li X Nanotechnology; 2006 Jul; 17(14):3591-7. PubMed ID: 19661610 [TBL] [Abstract][Full Text] [Related]
35. The transfer of charge carriers photogenerated in ZnO nanoparticles into a single ZnO nanowire. Seong H; Yun J; Jun JH; Cho K; Kim S Nanotechnology; 2009 Jun; 20(24):245201. PubMed ID: 19468167 [TBL] [Abstract][Full Text] [Related]
36. Tuning of operation mode of ZnO nanowire field effect transistors by solvent-driven surface treatment. Park W; Hong WK; Jo G; Wang G; Choe M; Maeng J; Kahng YH; Lee T Nanotechnology; 2009 Nov; 20(47):475702. PubMed ID: 19858553 [TBL] [Abstract][Full Text] [Related]
37. The elastic moduli of oriented tin oxide nanowires. Barth S; Harnagea C; Mathur S; Rosei F Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453 [TBL] [Abstract][Full Text] [Related]
38. Material characterisation of nanowires with intrinsic stress. Mills S; Sader JE; Boland JJ Nanotechnology; 2017 Sep; 28(35):355706. PubMed ID: 28656901 [TBL] [Abstract][Full Text] [Related]
39. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Suehiro J; Nakagawa N; Hidaka S; Ueda M; Imasaka K; Higashihata M; Okada T; Hara M Nanotechnology; 2006 May; 17(10):2567-73. PubMed ID: 21727506 [TBL] [Abstract][Full Text] [Related]
40. Higher-order harmonic resonances and mechanical properties of individual cadmium sulphide nanowires measured by in situ transmission electron microscopy. Gao P; Liu K; Liu L; Wang Z; Liao Z; Xu Z; Wang W; Bai X; Wang E; Li Y J Electron Microsc (Tokyo); 2010; 59(4):285-9. PubMed ID: 20181725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]