These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21730553)

  • 1. Magnetic-field-assisted solvothermal growth of single-crystalline bismuth nanowires.
    Xu Y; Ren Z; Ren W; Cao G; Deng K; Zhong Y
    Nanotechnology; 2008 Mar; 19(11):115602. PubMed ID: 21730553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of single crystalline CdS nanowires synthesized by solvothermal method.
    Hadia NM; García-Granda S; García JR
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5449-54. PubMed ID: 24758047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and nonlinear optical properties of single-crystalline KNb3O8 nanowires.
    Yu B; Cao B; Cao H; Zhang X; Chen D; Qu J; Niu H
    Nanotechnology; 2013 Mar; 24(8):085704. PubMed ID: 23377103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization.
    Bisrat Y; Luo ZP; Davis D; Lagoudas D
    Nanotechnology; 2007 Oct; 18(39):395601. PubMed ID: 21730421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4.
    Shi L; Pei C; Xu Y; Li Q
    J Am Chem Soc; 2011 Jul; 133(27):10328-31. PubMed ID: 21682309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition.
    Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K
    Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties.
    Zhang X; Quan Z; Yang J; Yang P; Lian H; Lin J
    J Colloid Interface Sci; 2009 Jan; 329(1):103-6. PubMed ID: 18930470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires.
    Zhang X; Huang X; Wen G; Geng X; Zhu J; Zhang T; Bai H
    Nanotechnology; 2010 Sep; 21(38):385601. PubMed ID: 20739745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties.
    Wu R; Li B; Gao M; Chen J; Zhu Q; Pan Y
    Nanotechnology; 2008 Aug; 19(33):335602. PubMed ID: 21730624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires.
    Fang YP; Xu AW; Song RQ; Zhang HX; You LP; Yu JC; Liu HQ
    J Am Chem Soc; 2003 Dec; 125(51):16025-34. PubMed ID: 14677994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and field-emission properties of bamboo-like beta-SiC nanowires.
    Shen G; Bando Y; Ye C; Liu B; Golberg D
    Nanotechnology; 2006 Jul; 17(14):3468-72. PubMed ID: 19661591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bismuth nanowires for potential applications in nanoscale electronics technology.
    Cronin SB; Lin YM; Rabin O; Black MR; Dresselhaus G; Dresselhaus MS; Gai PL
    Microsc Microanal; 2002 Feb; 8(1):58-63. PubMed ID: 12533205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process.
    Cheng G; Wang J; Liu X; Huang K
    J Phys Chem B; 2006 Aug; 110(33):16208-11. PubMed ID: 16913744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of crystalline Na2V6O16·3H2O ribbons into belts and rings.
    Chithaiah P; Chandrappa GT; Livage J
    Inorg Chem; 2012 Feb; 51(4):2241-6. PubMed ID: 22313349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties.
    Pan H; Liu B; Yi J; Poh C; Lim S; Ding J; Feng Y; Huan CH; Lin J
    J Phys Chem B; 2005 Mar; 109(8):3094-8. PubMed ID: 16851327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three synthetic routes to single-crystalline PbS nanowires with controlled growth direction and their electrical transport properties.
    Jang SY; Song YM; Kim HS; Cho YJ; Seo YS; Jung GB; Lee CW; Park J; Jung M; Kim J; Kim B; Kim JG; Kim YJ
    ACS Nano; 2010 Apr; 4(4):2391-401. PubMed ID: 20349941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections.
    Deng Z; Tang F; Chen D; Meng X; Cao L; Zou B
    J Phys Chem B; 2006 Sep; 110(37):18225-30. PubMed ID: 16970439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal synthesis of PbS hollow spheres with single crystal-like electron diffraction patterns.
    Zhao P; Wang J; Chen G; Xiao Z; Zhou J; Chen D; Huang K
    J Nanosci Nanotechnol; 2008 Jan; 8(1):379-85. PubMed ID: 18468086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of ZrO2 nanowires by ionic-liquid route.
    Dong WS; Lin FQ; Liu CL; Li MY
    J Colloid Interface Sci; 2009 May; 333(2):734-40. PubMed ID: 19249058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.