BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21730570)

  • 1. The fabrication of carbon nanostructures using electron beam resist pyrolysis and nanomachining processes for biosensing applications.
    Lee JA; Lee KC; Park SI; Lee SS
    Nanotechnology; 2008 May; 19(21):215302. PubMed ID: 21730570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position.
    Du R; Ssenyange S; Aktary M; McDermott MT
    Small; 2009 May; 5(10):1162-8. PubMed ID: 19235195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of microfluidic systems using electron beam lithography.
    Mali P; Sarkar A; Lal R
    Lab Chip; 2006 Feb; 6(2):310-5. PubMed ID: 16450043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography.
    Vila-Comamala J; Gorelick S; Guzenko VA; Färm E; Ritala M; David C
    Nanotechnology; 2010 Jul; 21(28):285305. PubMed ID: 20562479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a nanofabrication process to achieve high aspect-ratio nanostructures on a quartz substrate.
    Mohamed K; Alkaisi MM
    Nanotechnology; 2013 Jan; 24(1):015302. PubMed ID: 23221357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor.
    Lu X; Xiao Y; Lei Z; Chen J
    Biosens Bioelectron; 2009 Sep; 25(1):244-7. PubMed ID: 19577918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conducting patterned Pd nanowires by direct-write electron beam lithography.
    Bhuvana T; Kulkarni GU
    ACS Nano; 2008 Mar; 2(3):457-62. PubMed ID: 19206570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogap biosensors for electrical and label-free detection of biomolecular interactions.
    Kyu Kim S; Cho H; Park HJ; Kwon D; Min Lee J; Hyun Chung B
    Nanotechnology; 2009 Nov; 20(45):455502. PubMed ID: 19822932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon.
    Rykaczewski K; Hildreth OJ; Kulkarni D; Henry MR; Kim SK; Wong CP; Tsukruk VV; Fedorov AG
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):969-73. PubMed ID: 20356053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating.
    Gorelick S; Guzenko VA; Vila-Comamala J; David C
    Nanotechnology; 2010 Jul; 21(29):295303. PubMed ID: 20601756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100).
    Schirmer M; Walz MM; Vollnhals F; Lukasczyk T; Sandmann A; Chen C; Steinrück HP; Marbach H
    Nanotechnology; 2011 Feb; 22(8):085301. PubMed ID: 21242619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate atom enriched carbon nanostructures fabricated by focused electron beam induced deposition.
    Tripathi SK; Shukla N; Kulkarni VN
    Nanotechnology; 2008 Nov; 19(46):465302. PubMed ID: 21836240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method.
    Samardak A; Anisimova M; Samardak A; Ognev A
    Beilstein J Nanotechnol; 2015; 6():976-86. PubMed ID: 25977869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications.
    Lin HY; Chen HA; Wu YJ; Huang JH; Lin HN
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4482-5. PubMed ID: 21128444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenyl-bridged polysilsesquioxane positive and negative resist for electron beam lithography.
    Brigo L; Auzelyte V; Lister KA; Brugger J; Brusatin G
    Nanotechnology; 2012 Aug; 23(32):325302. PubMed ID: 22825028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-step electron beam lithography of buried nanostructures using cathodoluminescence imaging and low temperature.
    Donatini F; Dang le S
    Nanotechnology; 2010 Sep; 21(37):375303. PubMed ID: 20724777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces.
    Erdmanis M; Sievilä P; Shah A; Chekurov N; Ovchinnikov V; Tittonen I
    Nanotechnology; 2014 Aug; 25(33):335302. PubMed ID: 25074238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.