BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21730591)

  • 1. Electrical and rheological percolation of polymer nanocomposites prepared with functionalized copper nanowires.
    Gelves GA; Lin B; Sundararaj U; Haber JA
    Nanotechnology; 2008 May; 19(21):215712. PubMed ID: 21730591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending.
    Sureshkumar M; Na HY; Ahn KH; Lee SJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):756-64. PubMed ID: 25539420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites.
    Lu PW; Jaihao C; Pan LC; Tsai PW; Huang CS; Brangule A; Zarkov A; Kareiva A; Wang HT; Yang JC
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties.
    Gao C; Zhang S; Wang F; Wen B; Han C; Ding Y; Yang M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12252-60. PubMed ID: 24969179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and Thermal Properties of Surface-Modified Copper Nanowire/Polystyrene Nanocomposites through Latex Blending.
    Eom HS; Kim DW; Jang KS; Lee SJ
    ACS Omega; 2023 Dec; 8(49):46955-46966. PubMed ID: 38107942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes.
    Kim J; Hong SM; Kwak S; Seo Y
    Phys Chem Chem Phys; 2009 Dec; 11(46):10851-9. PubMed ID: 19924319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites.
    Moreno I; Navascues N; Arruebo M; Irusta S; Santamaria J
    Nanotechnology; 2013 Jul; 24(27):275603. PubMed ID: 23743565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.
    He C; She X; Peng Z; Zhong J; Liao S; Gong W; Liao J; Kong L
    Phys Chem Chem Phys; 2015 May; 17(18):12175-84. PubMed ID: 25881784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation.
    Nam S; Cho HW; Lim S; Kim D; Kim H; Sung BJ
    ACS Nano; 2013 Jan; 7(1):851-6. PubMed ID: 23237625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging.
    Loos J; Alexeev A; Grossiord N; Koning CE; Regev O
    Ultramicroscopy; 2005 Sep; 104(2):160-7. PubMed ID: 15885910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites.
    Tkalya E; Ghislandi M; Otten R; Lotya M; Alekseev A; van der Schoot P; Coleman J; de With G; Koning C
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15113-21. PubMed ID: 25116440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.
    Mao C; Zhu Y; Jiang W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5281-6. PubMed ID: 22950786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity and electrical resistivity of single copper nanowires.
    Peng WT; Chen FR; Lu MC
    Phys Chem Chem Phys; 2021 Sep; 23(36):20359-20364. PubMed ID: 34490856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive multifunctional graphene polycarbonate nanocomposites.
    Yoonessi M; Gaier JR
    ACS Nano; 2010 Dec; 4(12):7211-20. PubMed ID: 21082818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites.
    Jin Y; Gerhardt RA
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22264-71. PubMed ID: 25427537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.
    Angelov V; Velichkova H; Ivanov E; Kotsilkova R; Delville MH; Cangiotti M; Fattori A; Ottaviani MF
    Langmuir; 2014 Nov; 30(44):13411-21. PubMed ID: 25330464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional Ternary Hybrids with Synergistically Enhanced Electrical Performance for Conductive Nanocomposites and Prosthetic Electronic Skin.
    Hu Y; Liu X; Tian L; Zhao T; Wang H; Liang X; Zhou F; Zhu P; Li G; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38493-38505. PubMed ID: 30351905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels.
    Zhang X; Yan X; He Q; Wei H; Long J; Guo J; Gu H; Yu J; Liu J; Ding D; Sun L; Wei S; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6125-38. PubMed ID: 25719265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines.
    Zhang X; He Q; Gu H; Colorado HA; Wei S; Guo Z
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):898-910. PubMed ID: 23273023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks.
    Li S; Chen Y; Huang L; Pan D
    Inorg Chem; 2014 May; 53(9):4440-4. PubMed ID: 24750021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.