These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 21730632)
1. On the electronic and geometric structures of armchair GeC nanotubes: a hybrid density functional study. Rathi SJ; Ray AK Nanotechnology; 2008 Aug; 19(33):335706. PubMed ID: 21730632 [TBL] [Abstract][Full Text] [Related]
2. A hybrid density functional study of zigzag SiC nanotubes. Alam KM; Ray AK Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487 [TBL] [Abstract][Full Text] [Related]
3. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study. Barone V; Heyd J; Scuseria GE J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624 [TBL] [Abstract][Full Text] [Related]
4. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes. Moradian R; Behzad S; Chegel R J Phys Condens Matter; 2008 Nov; 20(46):465214. PubMed ID: 21693853 [TBL] [Abstract][Full Text] [Related]
5. Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. Zhao M; Xia Y; Zhang RQ; Lee ST J Chem Phys; 2005 Jun; 122(21):214707. PubMed ID: 15974762 [TBL] [Abstract][Full Text] [Related]
6. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field. Chen C; Tsai CC; Lu JM; Hwang CC J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563 [TBL] [Abstract][Full Text] [Related]
7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
8. Studies of iridium nanoparticles using density functional theory calculations. Pawluk T; Hirata Y; Wang L J Phys Chem B; 2005 Nov; 109(44):20817-23. PubMed ID: 16853698 [TBL] [Abstract][Full Text] [Related]
9. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Gao B; Jiang J; Wu Z; Luo Y J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072 [TBL] [Abstract][Full Text] [Related]
10. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties. Pan H; Feng YP; Lin J Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689 [TBL] [Abstract][Full Text] [Related]
11. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study. Rafati AA; Hashemianzadeh SM; Nojini ZB J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629 [TBL] [Abstract][Full Text] [Related]
12. Tailoring structural and electronic properties of RuO2 nanotubes: a many-body approach and electronic transport. Martínez JI; Abad E; Calle-Vallejo F; Krowne CM; Alonso JA Phys Chem Chem Phys; 2013 Sep; 15(35):14715-22. PubMed ID: 23900202 [TBL] [Abstract][Full Text] [Related]
13. Structure-dependent optical properties of single-walled silicon nanotubes. Zhang M; Su Z; Chen G Phys Chem Chem Phys; 2012 Apr; 14(14):4695-702. PubMed ID: 22374472 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation. Barone V; Scuseria GE J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916 [TBL] [Abstract][Full Text] [Related]
15. The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study. Alfieri G; Kimoto T Nanotechnology; 2009 Jul; 20(28):285703. PubMed ID: 19550011 [TBL] [Abstract][Full Text] [Related]