BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 21730632)

  • 1. On the electronic and geometric structures of armchair GeC nanotubes: a hybrid density functional study.
    Rathi SJ; Ray AK
    Nanotechnology; 2008 Aug; 19(33):335706. PubMed ID: 21730632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes.
    Moradian R; Behzad S; Chegel R
    J Phys Condens Matter; 2008 Nov; 20(46):465214. PubMed ID: 21693853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation.
    Zhao M; Xia Y; Zhang RQ; Lee ST
    J Chem Phys; 2005 Jun; 122(21):214707. PubMed ID: 15974762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field.
    Chen C; Tsai CC; Lu JM; Hwang CC
    J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of iridium nanoparticles using density functional theory calculations.
    Pawluk T; Hirata Y; Wang L
    J Phys Chem B; 2005 Nov; 109(44):20817-23. PubMed ID: 16853698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study.
    Rafati AA; Hashemianzadeh SM; Nojini ZB
    J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring structural and electronic properties of RuO2 nanotubes: a many-body approach and electronic transport.
    Martínez JI; Abad E; Calle-Vallejo F; Krowne CM; Alonso JA
    Phys Chem Chem Phys; 2013 Sep; 15(35):14715-22. PubMed ID: 23900202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-dependent optical properties of single-walled silicon nanotubes.
    Zhang M; Su Z; Chen G
    Phys Chem Chem Phys; 2012 Apr; 14(14):4695-702. PubMed ID: 22374472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation.
    Barone V; Scuseria GE
    J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study.
    Alfieri G; Kimoto T
    Nanotechnology; 2009 Jul; 20(28):285703. PubMed ID: 19550011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic properties of single-walled carbon nanotubes inside cyclic supermolecules.
    Akola J; Rytkönen K; Manninen M
    J Phys Chem B; 2006 Mar; 110(11):5186-90. PubMed ID: 16539446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio modeling of TiO2 nanotubes.
    Szieberth D; Ferrari AM; Noel Y; Ferrabone M
    Nanoscale; 2010 Jan; 2(1):81-9. PubMed ID: 20648368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of transition-metal atoms on boron nitride nanotube: a density-functional study.
    Wu X; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44711. PubMed ID: 16942178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles study of Si-doped BC2N nanotubes.
    Rupp CJ; Rossato J; Baierle RJ
    J Chem Phys; 2009 Mar; 130(11):114710. PubMed ID: 19317558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of CN carbon nitride nanotubes.
    Chai G; Lin C; Zhang M; Wang J; Cheng W
    Nanotechnology; 2010 May; 21(19):195702. PubMed ID: 20400819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.