These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21730653)

  • 1. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism.
    Wang SL; He YH; Zou J; Wang Y; Huang H; Huang BY; Liu CT; Liaw PK
    Nanotechnology; 2008 Aug; 19(34):345604. PubMed ID: 21730653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism.
    Noor Mohammad S
    J Chem Phys; 2009 Dec; 131(22):224702. PubMed ID: 20001071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Characteristics of the Si Whiskers Grown by Ni-Metal-Induced-Lateral-Crystallization.
    Pécz B; Vouroutzis N; Radnóczi GZ; Frangis N; Stoemenos J
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-catalysis: a contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition.
    Noor Mohammad S
    J Chem Phys; 2006 Sep; 125(9):094705. PubMed ID: 16965103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single crystalline β-SiAlON nanowhiskers: preparation and enhanced properties at high temperature.
    Hou X; Yu Z; Chen Z; Zhao B; Chou KC
    Dalton Trans; 2012 Jun; 41(23):7127-33. PubMed ID: 22565532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties.
    Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ
    Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Urchin-Like Mullite Whiskers on the High-Temperature Performance of Porous SiO₂-Based Ceramic Molds.
    Chen Y; Lu Z; Wan W; Li J; Miao K; Li D
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30978927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.
    Chu WG; Wang HF; Guo YJ; Zhang LN; Han ZH; Li QQ; Fan SS
    Inorg Chem; 2009 Feb; 48(3):1243-9. PubMed ID: 19128151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of sub-20-nm-sized bismuth 1-D structures using gallium-bismuth systems.
    Bhimarasetti G; Sunkara MK
    J Phys Chem B; 2005 Sep; 109(34):16219-22. PubMed ID: 16853061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-equilibrium-dominated vapor-liquid-solid growth mechanism.
    He C; Wang X; Wu Q; Hu Z; Ma Y; Fu J; Chen Y
    J Am Chem Soc; 2010 Apr; 132(13):4843-7. PubMed ID: 20225864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergism of C5N six-membered ring and vapor-liquid-solid growth of CN(x) nanotubes with pyridine precursor.
    Chen H; Yang Y; Hu Z; Huo K; Ma Y; Chen Y; Wang X; Lu Y
    J Phys Chem B; 2006 Aug; 110(33):16422-7. PubMed ID: 16913773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvothermal preparation and gas sensing properties of ZnO whiskers.
    Jiaqiang X; Yuping C; Jianian S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):248-53. PubMed ID: 16573104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ transmission electron microscopy observation of the growth of bismuth oxide whiskers.
    Mima T; Takeuchi Y; Arai S; Kishita K; Kuroda K; Saka H
    Microsc Microanal; 2008 Jun; 14(3):267-73. PubMed ID: 18312721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MgB2 superconducting whiskers synthesized by using the hybrid physical-chemical vapor deposition.
    Wang Y; Zhuang C; Gao J; Shan X; Zhang J; Liao Z; Xu H; Yu D; Feng Q
    J Am Chem Soc; 2009 Feb; 131(7):2436-7. PubMed ID: 19199641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method.
    Yoshinaga M; Takahashi H; Yamamoto K; Muramatsu A; Morikawa T
    J Colloid Interface Sci; 2007 May; 309(1):149-54. PubMed ID: 17362976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical aqueous self-assembly of C60 nano-whiskers and C60-silver nano-hybrids under continuous flow.
    Iyer KS; Raston CL; Saunders M
    Lab Chip; 2007 Sep; 7(9):1121-4. PubMed ID: 17713609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.