These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21730690)

  • 1. Bending fracture in carbon nanotubes.
    Kuo WS; Lu HF
    Nanotechnology; 2008 Dec; 19(49):495710. PubMed ID: 21730690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
    Feng JM; Dai YJ
    Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographically aligned carbon nanotubes grown on few-layer graphene films.
    Hunley DP; Johnson SL; Stieha JK; Sundararajan A; Meacham AT; Ivanov IN; Strachan DR
    ACS Nano; 2011 Aug; 5(8):6403-9. PubMed ID: 21749089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tube-tube and tube-surface interactions in straight suspended carbon nanotube structures.
    Abrams ZR; Hanein Y
    J Phys Chem B; 2006 Nov; 110(43):21419-23. PubMed ID: 17064089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy.
    Yang SC; Qian X
    Langmuir; 2013 Sep; 29(37):11793-801. PubMed ID: 23962334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and characterization of bamboo-shaped carbon nanotubes using nanocluster-assembled ZnO:Co thin films as catalyst.
    Zhao ZW; Lei W; Zhang XB; Tay BK; Chen JS
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6583-7. PubMed ID: 22962791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength.
    Qin J; Wang C; Wang Y; Lu R; Zheng L; Wang X; Yao Z; Gao Q; Wei H
    Nanotechnology; 2018 Sep; 29(39):395602. PubMed ID: 29972379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of hydrophilic, bamboo-shaped multiwalled carbon nanotubes by solid-state pyrolysis and its electrochemical studies.
    Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Feb; 110(5):2037-44. PubMed ID: 16471780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of the initial growth process of carbon nanotubes by time-resolved high resolution transmission electron microscopy.
    Watanabe H; Hisada Y; Mukainakano S; Tanaka N
    J Microsc; 2001 Jul; 203(Pt 1):40-6. PubMed ID: 11454153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation.
    Zhang LL; Xiong Z; Zhao XS
    ACS Nano; 2010 Nov; 4(11):7030-6. PubMed ID: 21028785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence.
    Xu Z; Li H; Fujisawa K; Kim YA; Endo M; Ding F
    Nanoscale; 2012 Jan; 4(1):130-6. PubMed ID: 22033549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assemblies of carbon nanotubes and unencapsulated sub-10-nm gold nanoparticles.
    Hang Q; Maschmann MR; Fisher TS; Janes DB
    Small; 2007 Jul; 3(7):1266-71. PubMed ID: 17487897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.
    Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB
    Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Out-of-plane growth of CNTs on graphene for supercapacitor applications.
    Kim YS; Kumar K; Fisher FT; Yang EH
    Nanotechnology; 2012 Jan; 23(1):015301. PubMed ID: 22155846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled partial embedding of carbon nanotubes within flexible transparent layers.
    Sansom EB; Rinderknecht D; Gharib M
    Nanotechnology; 2008 Jan; 19(3):035302. PubMed ID: 21817565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.