BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21730698)

  • 1. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductance gaps in graphene ribbons designed by molecular aggregations.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2009 Mar; 20(9):095705. PubMed ID: 19417501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-filter and Fano antiresonant effect in conductance through a zigzaglike polymer device: nonequilibrium Green's function approach.
    Fu HH; Yao KL
    J Chem Phys; 2011 Feb; 134(5):054903. PubMed ID: 21303156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation.
    Krompiewski S
    Nanotechnology; 2011 Nov; 22(44):445201. PubMed ID: 21975438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric properties of nanostructured systems based on narrow armchair graphene nanoribbons.
    Hozana C; Latgé A
    J Phys Condens Matter; 2019 Mar; 31(12):125303. PubMed ID: 30654349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of two finite armchair graphene nanoribbons.
    Rosales L; González JW
    Nanoscale Res Lett; 2013 Jan; 8(1):1. PubMed ID: 23279756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene nanoribbons in criss-crossed electric and magnetic fields.
    Roslyak O; Gumbs G; Huang D
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5431-43. PubMed ID: 21041223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative differential resistance devices by using N-doped graphene nanoribbons.
    Huang J; Wang W; Li Q; Yang J
    J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction.
    Chen JC; Cheng SG; Shen SQ; Sun QF
    J Phys Condens Matter; 2010 Jan; 22(3):035301. PubMed ID: 21386283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.