These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21730698)

  • 21. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges.
    Bilić A; Sanvito S
    J Chem Phys; 2013 Jan; 138(1):014704. PubMed ID: 23298054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions.
    Tung Nguyen L; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons.
    Xu Y; Wang BJ; Ke SH; Yang W; Alzahrani AZ
    J Chem Phys; 2012 Sep; 137(10):104107. PubMed ID: 22979850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J
    Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons.
    Kuo DMT; Chang YC
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons.
    Krompiewski S
    Nanotechnology; 2012 Apr; 23(13):135203. PubMed ID: 22418824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic Insights into Electronic Current Flow through Quinone Devices.
    Conrad L; Alcón I; Tremblay JC; Paulus B
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes.
    Krompiewski S
    Nanotechnology; 2014 Nov; 25(46):465201. PubMed ID: 25355693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. More π Electrons Make a Difference: Emergence of Many Radicals on Graphene Nanoribbons Studied by Ab Initio DMRG Theory.
    Mizukami W; Kurashige Y; Yanai T
    J Chem Theory Comput; 2013 Jan; 9(1):401-7. PubMed ID: 26589042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.