These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21730700)

  • 21. One-step solid state synthesis of capped γ-Fe(2)O(3) nanocrystallites.
    Zboril R; Bakandritsos A; Mashlan M; Tzitzios V; Dallas P; Trapalis Ch; Petridis D
    Nanotechnology; 2008 Mar; 19(9):095602. PubMed ID: 21817677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-temperature stable, iron-based core-shell catalysts for ammonia decomposition.
    Feyen M; Weidenthaler C; Güttel R; Schlichte K; Holle U; Lu AH; Schüth F
    Chemistry; 2011 Jan; 17(2):598-605. PubMed ID: 21207578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile aqueous synthesis and growth mechanism of CdTe nanorods.
    Gong H; Hao X; Gao C; Wu Y; Du J; Xu X; Jiang M
    Nanotechnology; 2008 Nov; 19(44):445603. PubMed ID: 21832735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties.
    Zeng S; Tang K; Li T
    J Colloid Interface Sci; 2007 Aug; 312(2):513-21. PubMed ID: 17498731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties.
    Liu L; Kou HZ; Mo W; Liu H; Wang Y
    J Phys Chem B; 2006 Aug; 110(31):15218-23. PubMed ID: 16884238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured pure gamma-Fe2O3 via forced precipitation in an organic solvent.
    Khaleel AA
    Chemistry; 2004 Feb; 10(4):925-32. PubMed ID: 14978818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of silica coated iron oxide magnetic nano-particles.
    Li YS; Church JS; Woodhead AL; Moussa F
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 76(5):484-9. PubMed ID: 20452273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, characterization and photoluminescence of lanthanum hydroxide nanorods by a simple route at room temperature.
    Mu Q; Chen T; Wang Y
    Nanotechnology; 2009 Aug; 20(34):345602. PubMed ID: 19652269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of one-dimensional silver oxide nanoparticle arrays and silver nanorods templated by Langmuir monolayers.
    Liu HG; Xiao F; Wang CW; Xue Q; Chen X; Lee YI; Hao J; Jiang J
    J Colloid Interface Sci; 2007 Oct; 314(1):297-303. PubMed ID: 17570381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aging effects in the electrokinetics of colloidal iron oxides.
    Plaza RC; Arias JL; Espín M; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2002 Jan; 245(1):86-90. PubMed ID: 16290339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe(3)O(4)-SBA-15) nanocomposites with a high iron content using temperature-programed reduction.
    Yiu HH; Keane MA; Lethbridge ZA; Lees MR; El Haj AJ; Dobson J
    Nanotechnology; 2008 Jun; 19(25):255606. PubMed ID: 21828658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of iron by decarboxylation in the formation of magnetite nanoparticles.
    Pérez N; López-Calahorra F; Labarta A; Batlle X
    Phys Chem Chem Phys; 2011 Nov; 13(43):19485-9. PubMed ID: 21960123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guided self-assembly of nanostructured titanium oxide.
    Wang B; Rozynek Z; Fossum JO; Knudsen KD; Yu Y
    Nanotechnology; 2012 Feb; 23(7):075706. PubMed ID: 22261509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes.
    Zhang H; Wu J; Zhai C; Ma X; Du N; Tu J; Yang D
    Nanotechnology; 2008 Jan; 19(3):035711. PubMed ID: 21817596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity.
    Togashi T; Naka T; Asahina S; Sato K; Takami S; Adschiri T
    Dalton Trans; 2011 Feb; 40(5):1073-8. PubMed ID: 21173987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods.
    Dutta DP; Jayakumar OD; Tyagi AK; Girija KG; Pillai CG; Sharma G
    Nanoscale; 2010 Jul; 2(7):1149-54. PubMed ID: 20648341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.
    Singh DP; Polychronopoulou K; Rebholz C; Aouadi SM
    Nanotechnology; 2010 Aug; 21(32):325601. PubMed ID: 20639583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.