These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21730724)

  • 1. Wafer-level assembly of carbon nanotube networks using dielectrophoresis.
    Monica AH; Papadakis SJ; Osiander R; Paranjape M
    Nanotechnology; 2008 Feb; 19(8):085303. PubMed ID: 21730724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets.
    Seichepine F; Salomon S; Collet M; Guillon S; Nicu L; Larrieu G; Flahaut E; Vieu C
    Nanotechnology; 2012 Mar; 23(9):095303. PubMed ID: 22327351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretically trapping semiconductive carbon nanotube networks.
    Cicoria R; Sun Y
    Nanotechnology; 2008 Dec; 19(48):485303. PubMed ID: 21836297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoresis-Based Positioning of Carbon Nanotubes for Wafer-Scale Fabrication of Carbon Nanotube Devices.
    Kimbrough J; Williams L; Yuan Q; Xiao Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of dielectrophoretic assembly of carbon nanotubes using 3D finite element analysis.
    Berger SD; McGruer NE; Adams GG
    Nanotechnology; 2015 Apr; 26(15):155602. PubMed ID: 25804394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future.
    Abdulhameed A; Halim MM; Halin IA
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36921341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis.
    Kim JE; Han CS
    Nanotechnology; 2005 Oct; 16(10):2245-50. PubMed ID: 20818004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
    Seichepine F; Rothe J; Dudina A; Hierlemann A; Frey U
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28295737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection.
    Lim D; Kwon S; Lee J; Shim HC; Lee HW; Kim S
    Rev Sci Instrum; 2009 Oct; 80(10):105103. PubMed ID: 19895087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.
    Stokes P; Khondaker SI
    Nanotechnology; 2008 Apr; 19(17):175202. PubMed ID: 21825663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of long carbon nanotube bridges across transparent electrodes using novel thickness-controlled dielectrophoresis.
    Abdulhameed A; Mohtar MN; Hamidon MN; Halin IA
    Electrophoresis; 2022 Feb; 43(3):487-494. PubMed ID: 34679198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving uniform field emission from carbon nanotube composite cold cathode with different carbon nanotube contents: effects of conductance and plasma treatment.
    Liu JB; Chen J; Xu NS; Deng SZ; She JC
    Ultramicroscopy; 2009 Apr; 109(5):390-4. PubMed ID: 19101085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films.
    Yang SB; Kong BS; Jung DH; Baek YK; Han CS; Oh SK; Jung HT
    Nanoscale; 2011 Apr; 3(4):1361-73. PubMed ID: 21359350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Assembly and Integration for Applications.
    Venkataraman A; Amadi EV; Chen Y; Papadopoulos C
    Nanoscale Res Lett; 2019 Jul; 14(1):220. PubMed ID: 31263975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes.
    Wei H; Craig A; Huey BD; Papadimitrakopoulos F; Marcus HL
    Nanotechnology; 2008 Nov; 19(45):455303. PubMed ID: 21832768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.
    Yuan D; Lin W; Guo R; Wong CP; Das S
    Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of Highly Aligned Carbon Nanotubes Using an Electro-Fluidic Assembly Process.
    Chai Z; Seo J; Abbasi SA; Busnaina A
    ACS Nano; 2018 Dec; 12(12):12315-12323. PubMed ID: 30511834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.