BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21730858)

  • 21. Normative Study of the Binaural Interaction Component of the Human Auditory Brainstem Response as a Function of Interaural Time Differences.
    Sammeth CA; Greene NT; Brown AD; Tollin DJ
    Ear Hear; 2021; 42(3):629-643. PubMed ID: 33141776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users.
    Jensen KK; Cosentino S; Bernstein JGW; Stakhovskaya OA; Goupell MJ
    Trends Hear; 2021; 25():2331216521997324. PubMed ID: 34057382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners.
    Cleary M; Bernstein JGW; Stakhovskaya OA; Noble J; Kolberg E; Jensen KK; Hoa M; Kim HJ; Goupell MJ
    Trends Hear; 2022; 26():23312165221129165. PubMed ID: 36379607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Adaptation of the Electrically Stimulated Auditory Nerve Is Not Affected by Advanced Age in Postlingually Deafened, Middle-aged, and Elderly Adult Cochlear Implant Users.
    He S; Skidmore J; Conroy S; Riggs WJ; Carter BL; Xie R
    Ear Hear; 2022 Jul-Aug 01; 43(4):1228-1244. PubMed ID: 34999595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners.
    Stakhovskaya OA; Goupell MJ
    Ear Hear; 2017; 38(1):e22-e38. PubMed ID: 27579987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of interaural frequency difference on binaural fusion evidenced by electrophysiological versus psychoacoustical measures.
    Zhou J; Durrant JD
    J Acoust Soc Am; 2003 Sep; 114(3):1508-15. PubMed ID: 14514204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for separate processing in the human brainstem of interaural intensity and temporal disparities for sound lateralization.
    Pratt H; Polyakov A; Kontorovich L
    Hear Res; 1997 Jun; 108(1-2):1-8. PubMed ID: 9213116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures.
    Firszt JB; Chambers And RD; Kraus N
    Ear Hear; 2002 Dec; 23(6):516-31. PubMed ID: 12476089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracochlear Stimulation of Electrically Evoked Auditory Brainstem Responses (eABRs) Remains the Preferred Pre-implant Auditory Nerve Function Test in an Assessor-blinded Comparison.
    Causon A; O'Driscoll M; Stapleton E; Lloyd S; Freeman S; Munro KJ
    Otol Neurotol; 2019 Jan; 40(1):47-55. PubMed ID: 30489452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between auditory nerve activity and temporal pitch perception in cochlear implant users.
    Carlyon RP; Deeks JM
    Adv Exp Med Biol; 2013; 787():363-71. PubMed ID: 23716242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binaural interaction in the auditory brainstem response: a normative study.
    Van Yper LN; Vermeire K; De Vel EF; Battmer RD; Dhooge IJ
    Clin Neurophysiol; 2015 Apr; 126(4):772-9. PubMed ID: 25240247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory brainstem implant: electrophysiologic responses and subject perception.
    Herrmann BS; Brown MC; Eddington DK; Hancock KE; Lee DJ
    Ear Hear; 2015; 36(3):368-76. PubMed ID: 25437141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Electrically Evoked Auditory Change Complex Evoked by Temporal Gaps Using Cochlear Implants or Auditory Brainstem Implants in Children With Cochlear Nerve Deficiency.
    He S; McFayden TC; Shahsavarani BS; Teagle HFB; Ewend M; Henderson L; Buchman CA
    Ear Hear; 2018; 39(3):482-494. PubMed ID: 28968281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pitch matching psychometrics in electric acoustic stimulation.
    Baumann U; Rader T; Helbig S; Bahmer A
    Ear Hear; 2011; 32(5):656-62. PubMed ID: 21869623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal integration of short-duration pulse trains in cochlear implant listeners: Psychophysical and electrophysiological measurements.
    Macherey O; Stahl P; Intartaglia B; Meunier S; Roman S; Schön D
    Hear Res; 2021 Apr; 403():108176. PubMed ID: 33524792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing Methods for Pairing Electrodes Across Ears With Cochlear Implants.
    Staisloff HE; Aronoff JM
    Ear Hear; 2021; 42(5):1218-1227. PubMed ID: 33538427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binaural sensitivity in children who use bilateral cochlear implants.
    Ehlers E; Goupell MJ; Zheng Y; Godar SP; Litovsky RY
    J Acoust Soc Am; 2017 Jun; 141(6):4264. PubMed ID: 28618809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined neural and behavioural measures of temporal pitch perception in cochlear implant users.
    Carlyon RP; Deeks JM
    J Acoust Soc Am; 2015 Nov; 138(5):2885-905. PubMed ID: 26627764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual electrode stimulation using the nucleus CI24RE cochlear implant: electrode impedance and pitch ranking studies.
    Busby PA; Plant KL
    Ear Hear; 2005 Oct; 26(5):504-11. PubMed ID: 16230899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.