BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21730939)

  • 1. Evaluation of nanoparticle uptake in tumors in real time using intravital imaging.
    Cho CF; Ablack A; Leong HS; Zijlstra A; Lewis J
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21730939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral nanoparticles as tools for intravital vascular imaging.
    Lewis JD; Destito G; Zijlstra A; Gonzalez MJ; Quigley JP; Manchester M; Stuhlmann H
    Nat Med; 2006 Mar; 12(3):354-60. PubMed ID: 16501571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles.
    Leong HS; Steinmetz NF; Ablack A; Destito G; Zijlstra A; Stuhlmann H; Manchester M; Lewis JD
    Nat Protoc; 2010 Aug; 5(8):1406-17. PubMed ID: 20671724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors.
    Steinmetz NF; Ablack AL; Hickey JL; Ablack J; Manocha B; Mymryk JS; Luyt LG; Lewis JD
    Small; 2011 Jun; 7(12):1664-72. PubMed ID: 21520408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo.
    Steinmetz NF; Manchester M
    Biomacromolecules; 2009 Apr; 10(4):784-92. PubMed ID: 19281149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model.
    Schädlich A; Caysa H; Mueller T; Tenambergen F; Rose C; Göpferich A; Kuntsche J; Mäder K
    ACS Nano; 2011 Nov; 5(11):8710-20. PubMed ID: 21970766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular targeted viral nanoparticles as tools for imaging cancer.
    Cho CF; Shukla S; Simpson EJ; Steinmetz NF; Luyt LG; Lewis JD
    Methods Mol Biol; 2014; 1108():211-30. PubMed ID: 24243252
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Banerjee SR; Foss CA; Horhota A; Pullambhatla M; McDonnell K; Zale S; Pomper MG
    Biomacromolecules; 2017 Jan; 18(1):201-209. PubMed ID: 28001364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cowpea mosaic virus nanoparticles for cancer imaging and therapy.
    Beatty PH; Lewis JD
    Adv Drug Deliv Rev; 2019 May; 145():130-144. PubMed ID: 31004625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X.
    Shukla S; Ablack AL; Wen AM; Lee KL; Lewis JD; Steinmetz NF
    Mol Pharm; 2013 Jan; 10(1):33-42. PubMed ID: 22731633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interior engineering of a viral nanoparticle and its tumor homing properties.
    Wen AM; Shukla S; Saxena P; Aljabali AA; Yildiz I; Dey S; Mealy JE; Yang AC; Evans DJ; Lomonossoff GP; Steinmetz NF
    Biomacromolecules; 2012 Dec; 13(12):3990-4001. PubMed ID: 23121655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Analysis of Human Cancer Cell Extravasation Using Intravital Imaging.
    Willetts L; Bond D; Stoletov K; Lewis JD
    Methods Mol Biol; 2016; 1458():27-37. PubMed ID: 27581012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.
    Li TS; Yawata T; Honke K
    Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells.
    Destito G; Yeh R; Rae CS; Finn MG; Manchester M
    Chem Biol; 2007 Oct; 14(10):1152-62. PubMed ID: 17961827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane.
    Zuo Z; Syrovets T; Genze F; Abaei A; Ma G; Simmet T; Rasche V
    NMR Biomed; 2015 Apr; 28(4):440-7. PubMed ID: 25711154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential uptake of chemically modified cowpea mosaic virus nanoparticles in macrophage subpopulations present in inflammatory and tumor microenvironments.
    Agrawal A; Manchester M
    Biomacromolecules; 2012 Oct; 13(10):3320-6. PubMed ID: 22963597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.
    Goos JACM; Cho A; Carter LM; Dilling TR; Davydova M; Mandleywala K; Puttick S; Gupta A; Price WS; Quinn JF; Whittaker MR; Lewis JS; Davis TP
    Theranostics; 2020; 10(2):567-584. PubMed ID: 31903138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells.
    Steinmetz NF; Cho CF; Ablack A; Lewis JD; Manchester M
    Nanomedicine (Lond); 2011 Feb; 6(2):351-64. PubMed ID: 21385137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.