These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 21731439)
1. Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: generalized regression neural network based on grey relational analysis and principal component analysis. Li HZ; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2011; 12(4):2242-61. PubMed ID: 21731439 [TBL] [Abstract][Full Text] [Related]
2. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies. Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689 [TBL] [Abstract][Full Text] [Related]
3. DFT studies of trans and cis influences in the homolysis of the Co-C bond in models of the alkylcobalamins. Govender PP; Navizet I; Perry CB; Marques HM J Phys Chem A; 2013 Apr; 117(14):3057-68. PubMed ID: 23510290 [TBL] [Abstract][Full Text] [Related]
4. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. Qu X; Latino DA; Aires-de-Sousa J J Cheminform; 2013; 5():34. PubMed ID: 23849655 [TBL] [Abstract][Full Text] [Related]
5. Improving the accuracy of density-functional theory calculation: the genetic algorithm and neural network approach. Li H; Shi L; Zhang M; Su Z; Wang X; Hu L; Chen G J Chem Phys; 2007 Apr; 126(14):144101. PubMed ID: 17444695 [TBL] [Abstract][Full Text] [Related]
6. Side reactions of nitroxide-mediated polymerization: N-O versus O-C cleavage of alkoxyamines. Hodgson JL; Roskop LB; Gordon MS; Lin CY; Coote ML J Phys Chem A; 2010 Sep; 114(38):10458-66. PubMed ID: 20812754 [TBL] [Abstract][Full Text] [Related]
7. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. Hirao H J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069 [TBL] [Abstract][Full Text] [Related]
8. The Cobalt-Methyl Bond Dissociation in Methylcobalamin: New Benchmark Analysis Based on Density Functional Theory and Completely Renormalized Coupled-Cluster Calculations. Kozlowski PM; Kumar M; Piecuch P; Li W; Bauman NP; Hansen JA; Lodowski P; Jaworska M J Chem Theory Comput; 2012 Jun; 8(6):1870-94. PubMed ID: 26593822 [TBL] [Abstract][Full Text] [Related]
9. Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach. Gao T; Shi LL; Li HB; Zhao SS; Li H; Sun SL; Su ZM; Lu YH Phys Chem Chem Phys; 2009 Jul; 11(25):5124-9. PubMed ID: 19562144 [TBL] [Abstract][Full Text] [Related]
10. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm. Wu J; Peng D; Li Z; Zhao L; Ling H PLoS One; 2015; 10(3):e0120976. PubMed ID: 25807466 [TBL] [Abstract][Full Text] [Related]
11. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine. Gao T; Sun SL; Shi LL; Li H; Li HZ; Su ZM; Lu YH J Chem Phys; 2009 May; 130(18):184104. PubMed ID: 19449905 [TBL] [Abstract][Full Text] [Related]
12. Benchmark Density Functional Theory Approach for the Calculation of Bond Dissociation Energies of the M-O Kosar N; Ayub K; Gilani MA; Muhammad S; Mahmood T ACS Omega; 2022 Jun; 7(24):20800-20808. PubMed ID: 35935283 [TBL] [Abstract][Full Text] [Related]
13. Computational Study of Selected Amine and Lactam N-Oxides Including Comparisons of N-O Bond Dissociation Enthalpies with Those of Pyridine N-Oxides. Greenberg A; Green AR; Liebman JF Molecules; 2020 Aug; 25(16):. PubMed ID: 32823830 [TBL] [Abstract][Full Text] [Related]
14. Predicting Autoxidation of Sulfides in Drug-like Molecules Using Quantum Mechanical/Density Functional Theory Methods. Bose A; Valdivia-Berroeta GA; Gonnella NC J Chem Inf Model; 2024 Jan; 64(1):128-137. PubMed ID: 38127785 [TBL] [Abstract][Full Text] [Related]
15. Remote substituent effects on bond dissociation energies of para-substituted aromatic silanes. Cheng YH; Zhao X; Song KS; Liu L; Guo QX J Org Chem; 2002 Sep; 67(19):6638-45. PubMed ID: 12227792 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant potential of glutathione: a theoretical study. Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966 [TBL] [Abstract][Full Text] [Related]
17. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies. Feng Y; Liu L; Wang JT; Huang H; Guo QX J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451 [TBL] [Abstract][Full Text] [Related]
18. Ab initio calculation of inner-sphere reorganization energies of arenediazonium ion couples. Weaver MN; Janicki SZ; Petillo PA J Org Chem; 2001 Feb; 66(4):1138-45. PubMed ID: 11312940 [TBL] [Abstract][Full Text] [Related]
19. Calculating bond dissociation energies of X-H (X=C, N, O, S) bonds of aromatic systems via density functional theory: a detailed comparison of methods. Trung NQ; Mechler A; Hoa NT; Vo QV R Soc Open Sci; 2022 Jun; 9(6):220177. PubMed ID: 35706655 [TBL] [Abstract][Full Text] [Related]
20. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]