BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 21731456)

  • 1. Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging.
    Chiu SW; Leake MC
    Int J Mol Sci; 2011; 12(4):2518-42. PubMed ID: 21731456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison and progress review of various super-resolution fluorescence imaging techniques].
    Chen J; Liu W; Xu Z
    Se Pu; 2021 Oct; 39(10):1055-1064. PubMed ID: 34505427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PALM and STORM: unlocking live-cell super-resolution.
    Henriques R; Griffiths C; Hesper Rego E; Mhlanga MM
    Biopolymers; 2011 May; 95(5):322-31. PubMed ID: 21254001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution fluorescence microscopy for investigating bacterial cell biology.
    Carsten A; Wolters M; Aepfelbacher M
    Mol Microbiol; 2024 Apr; 121(4):646-658. PubMed ID: 38041391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology.
    Haas BL; Matson JS; DiRita VJ; Biteen JS
    Molecules; 2014 Aug; 19(8):12116-49. PubMed ID: 25123183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy.
    Wang L; Frei MS; Salim A; Johnsson K
    J Am Chem Soc; 2019 Feb; 141(7):2770-2781. PubMed ID: 30550714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging.
    Gahlmann A; Moerner WE
    Nat Rev Microbiol; 2014 Jan; 12(1):9-22. PubMed ID: 24336182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Resolution Imaging Conditions for enhanced Yellow Fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers.
    Jusuk I; Vietz C; Raab M; Dammeyer T; Tinnefeld P
    Sci Rep; 2015 Sep; 5():14075. PubMed ID: 26373229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing DNA interactions with proteins using a single-molecule toolbox: inside the cell, in a test tube and in a computer.
    Wollman AJ; Miller H; Zhou Z; Leake MC
    Biochem Soc Trans; 2015 Apr; 43(2):139-45. PubMed ID: 26020443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review.
    Laine RF; Kaminski Schierle GS; van de Linde S; Kaminski CF
    Methods Appl Fluoresc; 2016 Jun; 4(2):022004. PubMed ID: 28809165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.
    Zhang H; Guo P
    Methods; 2014 May; 67(2):169-76. PubMed ID: 24440482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells.
    Stoneman MR; Raicu V
    J Phys Chem B; 2023 Jun; 127(21):4708-4721. PubMed ID: 37205844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking individual membrane proteins and their biochemistry: The power of direct observation.
    Barden AO; Goler AS; Humphreys SC; Tabatabaei S; Lochner M; Ruepp MD; Jack T; Simonin J; Thompson AJ; Jones JP; Brozik JA
    Neuropharmacology; 2015 Nov; 98():22-30. PubMed ID: 25998277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscopic Cellular Imaging: Confinement Broadens Understanding.
    Lee SA; Ponjavic A; Siv C; Lee SF; Biteen JS
    ACS Nano; 2016 Sep; 10(9):8143-53. PubMed ID: 27602688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate.
    Durisic N; Laparra-Cuervo L; Sandoval-Álvarez A; Borbely JS; Lakadamyali M
    Nat Methods; 2014 Feb; 11(2):156-62. PubMed ID: 24390439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution Imaging of Live Bacteria Cells Using a Genetically Directed, Highly Photostable Fluoromodule.
    Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE
    J Am Chem Soc; 2016 Aug; 138(33):10398-401. PubMed ID: 27479076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring dynamics of nuclear proteins by photobleaching.
    Dundr M; Misteli T
    Curr Protoc Cell Biol; 2003 May; Chapter 13():Unit 13.5. PubMed ID: 18228420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes.
    Plank M; Wadhams GH; Leake MC
    Integr Biol (Camb); 2009 Oct; 1(10):602-12. PubMed ID: 20023777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.