BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21731466)

  • 21. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.
    Kalani M; Yunus R
    Int J Nanomedicine; 2012; 7():2165-72. PubMed ID: 22619552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
    Djerafi R; Swanepoel A; Crampon C; Kalombo L; Labuschagne P; Badens E; Masmoudi Y
    Eur J Pharm Sci; 2017 May; 102():161-171. PubMed ID: 28302396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.
    Ha ES; Kim JS; Baek IH; Yoo JW; Jung Y; Moon HR; Kim MS
    Drug Des Devel Ther; 2015; 9():4269-77. PubMed ID: 26345723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles.
    Kakran M; Sahoo NG; Antipina MN; Li L
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2864-70. PubMed ID: 23623107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.
    Park J; Park HJ; Cho W; Cha KH; Kang YS; Hwang SJ
    Int J Pharm; 2010 Aug; 396(1-2):239-45. PubMed ID: 20599602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.
    Zu Y; Sun W; Zhao X; Wang W; Li Y; Ge Y; Liu Y; Wang K
    Eur J Pharm Sci; 2014 Mar; 53():109-17. PubMed ID: 24345795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of wettability and dissolution properties of cilostazol using the supercritical antisolvent process: effect of various additives.
    Kim MS; Kim JS; Hwang SJ
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):230-3. PubMed ID: 20118585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin nanoparticles for transdermal delivery: preparation and physicochemical characterization and in vitro evaluation.
    Zhao X; Zu Y; Zu S; Wang D; Zhang Y; Zu B
    Drug Dev Ind Pharm; 2010 Oct; 36(10):1177-85. PubMed ID: 20367030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.
    Anwar M; Ahmad I; Warsi MH; Mohapatra S; Ahmad N; Akhter S; Ali A; Ahmad FJ
    Eur J Pharm Biopharm; 2015 Oct; 96():162-72. PubMed ID: 26241925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.
    Park HJ; Kim MS; Lee S; Kim JS; Woo JS; Park JS; Hwang SJ
    Int J Pharm; 2007 Jan; 328(2):152-60. PubMed ID: 16959448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving stability and oral bioavailability of hydroxycamptothecin via nanocrystals in microparticles (NCs/MPs) technology.
    Wang Y; Xuan J; Zhao G; Wang D; Ying N; Zhuang J
    Int J Pharm; 2021 Jul; 604():120729. PubMed ID: 34029666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect.
    Wang A; Li S
    BMC Biotechnol; 2008 May; 8():46. PubMed ID: 18454874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal behavior and thermal decarboxylation of 10-hydroxycamptothecin in the solid state.
    Wang SL; Lin SY; Hsieh TF; Chan SA
    J Pharm Biomed Anal; 2007 Jan; 43(2):457-63. PubMed ID: 16934429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation.
    Yang X; Liu Y; Zhao Y; Han M; Guo Y; Kuang H; Wang X
    Int J Nanomedicine; 2016; 11():2979-94. PubMed ID: 27382284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of a dispersible PEGylate nanostructured lipid carriers (NLC) loaded with 10-hydroxycamptothecin by spray-drying.
    Zhang X; Pan W; Gan L; Zhu C; Gan Y; Nie S
    Chem Pharm Bull (Tokyo); 2008 Dec; 56(12):1645-50. PubMed ID: 19043233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of 10-hydroxycamptothecin loaded nanostructured lipid carriers.
    Liu K; Sun J; Wang Y; He Y; Gao K; He Z
    Drug Dev Ind Pharm; 2008 May; 34(5):465-71. PubMed ID: 18473227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.
    Yang L; Sun Z; Zu Y; Zhao C; Sun X; Zhang Z; Zhang L
    Food Chem; 2012 May; 132(1):319-25. PubMed ID: 26434296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method.
    Imperiale JC; Bevilacqua G; Rosa Pde T; Sosnik A
    Drug Dev Ind Pharm; 2014 Dec; 40(12):1607-15. PubMed ID: 24050705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.