These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
627 related articles for article (PubMed ID: 21731490)
1. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. Daniel J; Maamar H; Deb C; Sirakova TD; Kolattukudy PE PLoS Pathog; 2011 Jun; 7(6):e1002093. PubMed ID: 21731490 [TBL] [Abstract][Full Text] [Related]
2. The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Daniel J; Kapoor N; Sirakova T; Sinha R; Kolattukudy P Mol Microbiol; 2016 Sep; 101(5):784-94. PubMed ID: 27325376 [TBL] [Abstract][Full Text] [Related]
3. Use of an adipocyte model to study the transcriptional adaptation of Mycobacterium tuberculosis to store and degrade host fat. Rastogi S; Agarwal P; Krishnan MY Int J Mycobacteriol; 2016 Mar; 5(1):92-8. PubMed ID: 26927997 [TBL] [Abstract][Full Text] [Related]
4. Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Santucci P; Diomandé S; Poncin I; Alibaud L; Viljoen A; Kremer L; de Chastellier C; Canaan S Infect Immun; 2018 Sep; 86(9):. PubMed ID: 29986895 [TBL] [Abstract][Full Text] [Related]
5. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Laval T; Chaumont L; Demangel C Immunol Rev; 2021 May; 301(1):84-97. PubMed ID: 33559209 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Santucci P; Johansen MD; Point V; Poncin I; Viljoen A; Cavalier JF; Kremer L; Canaan S Sci Rep; 2019 Jun; 9(1):8667. PubMed ID: 31209261 [TBL] [Abstract][Full Text] [Related]
8. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish. Liu DQ; Zhang JL; Pan ZF; Mai JT; Mei HJ; Dai Y; Zhang L; Wang QZ Int J Med Microbiol; 2020 Jan; 310(1):151378. PubMed ID: 31757695 [TBL] [Abstract][Full Text] [Related]
9. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. Deb C; Lee CM; Dubey VS; Daniel J; Abomoelak B; Sirakova TD; Pawar S; Rogers L; Kolattukudy PE PLoS One; 2009 Jun; 4(6):e6077. PubMed ID: 19562030 [TBL] [Abstract][Full Text] [Related]
10. WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. Brandenburg J; Marwitz S; Tazoll SC; Waldow F; Kalsdorf B; Vierbuchen T; Scholzen T; Gross A; Goldenbaum S; Hölscher A; Hein M; Linnemann L; Reimann M; Kispert A; Leitges M; Rupp J; Lange C; Niemann S; Behrends J; Goldmann T; Heine H; Schaible UE; Hölscher C; Schwudke D; Reiling N J Clin Invest; 2021 Aug; 131(16):. PubMed ID: 34255743 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis. Chandra P; He L; Zimmerman M; Yang G; Köster S; Ouimet M; Wang H; Moore KJ; Dartois V; Schilling JD; Philips JA mBio; 2020 Jul; 11(4):. PubMed ID: 32636249 [TBL] [Abstract][Full Text] [Related]
12. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis. Mali PC; Meena LS J Biosci; 2018 Mar; 43(1):149-154. PubMed ID: 29485123 [TBL] [Abstract][Full Text] [Related]
13. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Kalam H; Chou CH; Kadoki M; Graham DB; Deguine J; Hung DT; Xavier RJ Cell Host Microbe; 2023 Jun; 31(6):978-992.e5. PubMed ID: 37269834 [TBL] [Abstract][Full Text] [Related]
14. Triacylglycerols: Fuelling the Hibernating Maurya RK; Bharti S; Krishnan MY Front Cell Infect Microbiol; 2018; 8():450. PubMed ID: 30687647 [No Abstract] [Full Text] [Related]
15. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. Genoula M; Marín Franco JL; Maio M; Dolotowicz B; Ferreyra M; Milillo MA; Mascarau R; Moraña EJ; Palmero D; Matteo M; Fuentes F; López B; Barrionuevo P; Neyrolles O; Cougoule C; Lugo-Villarino G; Vérollet C; Sasiain MDC; Balboa L PLoS Pathog; 2020 Oct; 16(10):e1008929. PubMed ID: 33002063 [TBL] [Abstract][Full Text] [Related]
16. Sachdeva K; Goel M; Sudhakar M; Mehta M; Raju R; Raman K; Singh A; Sundaramurthy V J Biol Chem; 2020 Jul; 295(27):9192-9210. PubMed ID: 32424041 [TBL] [Abstract][Full Text] [Related]
17. Human granuloma in vitro model, for TB dormancy and resuscitation. Kapoor N; Pawar S; Sirakova TD; Deb C; Warren WL; Kolattukudy PE PLoS One; 2013; 8(1):e53657. PubMed ID: 23308269 [TBL] [Abstract][Full Text] [Related]
18. Lipidomics revealed the global lipid responses of primary bovine alveolar macrophages to infections of Mycobacterium tuberculosis and Mycobacterium bovis. Gao W; Cai Y; Zhang G; Wang X; Wang J; Li Y; Wang Y Int Immunopharmacol; 2022 Mar; 104():108407. PubMed ID: 34924313 [TBL] [Abstract][Full Text] [Related]
19. The impact of Chen Z; Kong X; Ma Q; Chen J; Zeng Y; Liu H; Wang X; Lu S Front Immunol; 2024; 15():1402024. PubMed ID: 38873598 [TBL] [Abstract][Full Text] [Related]
20. Differential transcriptional response in macrophages infected with cell wall deficient versus normal Mycobacterium Tuberculosis. Fu YR; Gao KS; Ji R; Yi ZJ Int J Biol Sci; 2015; 11(1):22-30. PubMed ID: 25552926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]