These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21731900)

  • 1. Thiolene-based microfluidic flow cells for surface plasmon resonance imaging.
    Sheppard G; Oseki T; Baba A; Patton D; Kaneko F; Mao L; Locklin J
    Biomicrofluidics; 2011 Jun; 5(2):26501. PubMed ID: 21731900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction.
    Goyal S; Desai AV; Lewis RW; Ranganathan DR; Li H; Zeng D; Reichert DE; Kenis PJ
    Sens Actuators B Chem; 2014 Jan; 190():634-644. PubMed ID: 25246730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic platform for the generation of organic-phase microreactors.
    Cygan ZT; Cabral JT; Beers KL; Amis EJ
    Langmuir; 2005 Apr; 21(8):3629-34. PubMed ID: 15807612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Detection of Photorelease Kinetics on Gold and Glass Surfaces using Streptavidin-Coupled Biotinylated Photolabile Protecting Groups for Nucleosides.
    Drexler K; Smirnova J; Galetskaya M; Schweizer N; Gauglitz G; Steiner UE
    Chemphyschem; 2017 Oct; 18(20):2890-2898. PubMed ID: 28771905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Polydopamine Coatings on Gold Substrates Inspected by Surface Plasmon Resonance Imaging.
    Yang W; Liu C; Chen Y
    Langmuir; 2018 Mar; 34(12):3565-3571. PubMed ID: 29505722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid microarray detection of DNA and proteins in microliter volumes with surface plasmon resonance imaging measurements.
    Seefeld TH; Zhou WJ; Corn RM
    Langmuir; 2011 May; 27(10):6534-40. PubMed ID: 21488682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy.
    Liu J; Eddings MA; Miles AR; Bukasov R; Gale BK; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4296-301. PubMed ID: 19408947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed surface plasmon resonance imaging for protein biomarker analysis.
    Ouellet E; Lund L; Lagally ET
    Methods Mol Biol; 2013; 949():473-90. PubMed ID: 23329461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.
    Deng S; Wang P; Liu S; Zhao T; Xu S; Guo M; Yu X
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous detection of transgenic DNA by surface plasmon resonance imaging with potential application to gene doping detection.
    Scarano S; Ermini ML; Spiriti MM; Mascini M; Bogani P; Minunni M
    Anal Chem; 2011 Aug; 83(16):6245-53. PubMed ID: 21755925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip.
    Hsu WT; Hsieh WH; Cheng SF; Jen CP; Wu CC; Li CH; Lee CY; Li WY; Chau LK; Chiang CY; Lyu SR
    Anal Chim Acta; 2011 Jul; 697(1-2):75-82. PubMed ID: 21641421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B
    Bhardwaj H; Sumana G; Marquette CA
    Food Chem; 2020 Mar; 307():125530. PubMed ID: 31639579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review.
    Wang B; Park B
    J Agric Food Chem; 2020 Nov; 68(46):12927-12939. PubMed ID: 32816471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of cell surface antigens by Surface Plasmon Resonance imaging.
    Stojanović I; Schasfoort RB; Terstappen LW
    Biosens Bioelectron; 2014 Feb; 52():36-43. PubMed ID: 24016537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.