BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21732317)

  • 1. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit.
    Pardo CE; Darst RP; Nabilsi NH; Delmas AL; Kladde MP
    Curr Protoc Mol Biol; 2011 Jul; Chapter 21():Unit 21.22. PubMed ID: 21732317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects.
    Pardo CE; Carr IM; Hoffman CJ; Darst RP; Markham AF; Bonthron DT; Kladde MP
    Nucleic Acids Res; 2011 Jan; 39(1):e5. PubMed ID: 20959287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methyltransferase probing of chromatin structure within populations and on single molecules.
    Pardo C; Hoose SA; Pondugula S; Kladde MP
    Methods Mol Biol; 2009; 523():41-65. PubMed ID: 19381922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit.
    Darst RP; Pardo CE; Pondugula S; Gangaraju VK; Nabilsi NH; Bartholomew B; Kladde MP
    Methods Mol Biol; 2012; 833():125-41. PubMed ID: 22183592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated DNA methylation and chromatin structural analysis at single-molecule resolution.
    Pardo CE; Nabilsi NH; Darst RP; Kladde MP
    Methods Mol Biol; 2015; 1288():123-41. PubMed ID: 25827879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level.
    Fatemi M; Pao MM; Jeong S; Gal-Yam EN; Egger G; Weisenberger DJ; Jones PA
    Nucleic Acids Res; 2005 Nov; 33(20):e176. PubMed ID: 16314307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methyltransferase accessibility protocol for individual templates by deep sequencing.
    Darst RP; Nabilsi NH; Pardo CE; Riva A; Kladde MP
    Methods Enzymol; 2012; 513():185-204. PubMed ID: 22929770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule and population probing of chromatin structure using DNA methyltransferases.
    Kilgore JA; Hoose SA; Gustafson TL; Porter W; Kladde MP
    Methods; 2007 Mar; 41(3):320-32. PubMed ID: 17309843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping chromatin structure in vivo using DNA methyltransferases.
    Jessen WJ; Dhasarathy A; Hoose SA; Carvin CD; Risinger AL; Kladde MP
    Methods; 2004 May; 33(1):68-80. PubMed ID: 15039089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsoft Word macro for analysis of cytosine methylation by the bisulfite deamination reaction.
    Singal R; Grimes SR
    Biotechniques; 2001 Jan; 30(1):116-20. PubMed ID: 11196301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma.
    Nabilsi NH; Deleyrolle LP; Darst RP; Riva A; Reynolds BA; Kladde MP
    Genome Res; 2014 Feb; 24(2):329-39. PubMed ID: 24105770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.
    Frommer M; McDonald LE; Millar DS; Collis CM; Watt F; Grigg GW; Molloy PL; Paul CL
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1827-31. PubMed ID: 1542678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing.
    Lee I; Razaghi R; Gilpatrick T; Molnar M; Gershman A; Sadowski N; Sedlazeck FJ; Hansen KD; Simpson JT; Timp W
    Nat Methods; 2020 Dec; 17(12):1191-1199. PubMed ID: 33230324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution.
    Garrett-Bakelman FE; Sheridan CK; Kacmarczyk TJ; Ishii J; Betel D; Alonso A; Mason CE; Figueroa ME; Melnick AM
    J Vis Exp; 2015 Feb; (96):e52246. PubMed ID: 25742437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome Occupancy and Methylome Sequencing (NOMe-seq).
    Lay FD; Kelly TK; Jones PA
    Methods Mol Biol; 2018; 1708():267-284. PubMed ID: 29224149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAME: identification of chromatin accessibility from nucleosome occupancy and methylome sequencing.
    Piao Y; Lee SK; Lee EJ; Robertson KD; Shi H; Ryu KH; Choi JH
    Bioinformatics; 2017 Apr; 33(8):1139-1146. PubMed ID: 28035030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation.
    Shiraishi M; Hayatsu H
    DNA Res; 2004 Dec; 11(6):409-15. PubMed ID: 15871463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules.
    Kelly TK; Liu Y; Lay FD; Liang G; Berman BP; Jones PA
    Genome Res; 2012 Dec; 22(12):2497-506. PubMed ID: 22960375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq).
    Rhie SK; Schreiner S; Farnham PJ
    Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI.
    Wojciechowski M; Czapinska H; Bochtler M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):105-10. PubMed ID: 23248272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.