These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM). Corona PT; Ruocco N; Weigandt KM; Leal LG; Helgeson ME Sci Rep; 2018 Oct; 8(1):15559. PubMed ID: 30349018 [TBL] [Abstract][Full Text] [Related]
44. The effect of flow configuration on hydrodynamic stresses and dispersion of low density rigid aggregates. Fellay LS; Vanni M J Colloid Interface Sci; 2012 Dec; 388(1):47-55. PubMed ID: 23010315 [TBL] [Abstract][Full Text] [Related]
45. Fragmentation and erosion of two-dimensional aggregates in shear flow. Vassileva ND; van den Ende D; Mugele F; Mellema J Langmuir; 2007 Feb; 23(5):2352-61. PubMed ID: 17309199 [TBL] [Abstract][Full Text] [Related]
46. Synergistic effects of flow and interfaces on antibody aggregation. Grigolato F; Arosio P Biotechnol Bioeng; 2020 Feb; 117(2):417-428. PubMed ID: 31654415 [TBL] [Abstract][Full Text] [Related]
47. Mesoscale modeling: solving complex flows in biology and biotechnology. Mills ZG; Mao W; Alexeev A Trends Biotechnol; 2013 Jul; 31(7):426-34. PubMed ID: 23755997 [TBL] [Abstract][Full Text] [Related]
48. Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry. Xiao F; Li X; Lam K; Wang D J Environ Sci (China); 2012; 24(7):1157-64. PubMed ID: 23513434 [TBL] [Abstract][Full Text] [Related]
49. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation. Duerkop M; Berger E; Dürauer A; Jungbauer A Biotechnol J; 2018 Jul; 13(7):e1800062. PubMed ID: 29575605 [TBL] [Abstract][Full Text] [Related]
50. Characterization of hydrodynamics and volumetric power input in microtiter plates for the scale-up of downstream operations. Montes-Serrano I; Satzer P; Jungbauer A; Dürauer A Biotechnol Bioeng; 2022 Feb; 119(2):523-534. PubMed ID: 34741535 [TBL] [Abstract][Full Text] [Related]
51. Strength Deterioration of Nonfractal Particle Aggregates in Simple Shear Flow. Horii K; Yamada R; Harada S Langmuir; 2015 Jul; 31(29):7909-18. PubMed ID: 26153265 [TBL] [Abstract][Full Text] [Related]
52. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. Song MJ; Dean D; Knothe Tate ML PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862249 [TBL] [Abstract][Full Text] [Related]
53. Mixing of a mAb Formulation in a New Magnetically Coupled Single-Use Mixing System: Key Learnings of Preliminary Experimental and Computational Evaluation. Desai KG; Li L; Palmer M; Rosamonte M; Schofield P; Pongwa L; Gidh A; Barnett J; Rastelli M; Colandene JD; Nesta DP J Pharm Sci; 2019 Dec; 108(12):3932-3937. PubMed ID: 31521644 [TBL] [Abstract][Full Text] [Related]
54. Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers. La Mantia M; Chagovets TV; Rotter M; Skrbek L Rev Sci Instrum; 2012 May; 83(5):055109. PubMed ID: 22667659 [TBL] [Abstract][Full Text] [Related]
55. Small-Scale Tools to Assess the Impact of Interfacial and Shear Stress on Biologic Drug Products. Ogunyankin MO; Deshmukh S; Krause ME; Carvalho T; Huang M; Ilott A; Remy B; Khossravi M AAPS PharmSciTech; 2019 May; 20(5):184. PubMed ID: 31062111 [TBL] [Abstract][Full Text] [Related]
56. Metrology of confined flows using wide field nanoparticle velocimetry. Ranchon H; Picot V; Bancaud A Sci Rep; 2015 May; 5():10128. PubMed ID: 25974654 [TBL] [Abstract][Full Text] [Related]
57. Quantitatively measuring in situ flows using a self-contained underwater velocimetry apparatus (SCUVA). Katija K; Colin SP; Costello JH; Dabiri JO J Vis Exp; 2011 Oct; (56):e2615. PubMed ID: 22064442 [TBL] [Abstract][Full Text] [Related]
58. Driven magnetic particles on a fluid surface: pattern assisted surface flows. Belkin M; Snezhko A; Aranson IS; Kwok WK Phys Rev Lett; 2007 Oct; 99(15):158301. PubMed ID: 17995219 [TBL] [Abstract][Full Text] [Related]
59. Flow-Pattern Characterization of Biphasic Electrochemical Cells by Magnetic Resonance Imaging under Forced Hydrodynamic Conditions. Serial MR; Velasco MI; Silletta EV; Zanotto FM; Dassie SA; Acosta RH Chemphyschem; 2017 Dec; 18(23):3469-3477. PubMed ID: 28960697 [TBL] [Abstract][Full Text] [Related]
60. The uniqueness of flow in probing the aggregation behavior of clinically relevant antibodies. Willis LF; Kumar A; Jain T; Caffry I; Xu Y; Radford SE; Kapur N; Vásquez M; Brockwell DJ Eng Rep; 2020 May; 2(5):e12147. PubMed ID: 34901768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]