BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21732687)

  • 1. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid.
    Xiang Z; Wang L
    J Org Chem; 2011 Aug; 76(15):6367-71. PubMed ID: 21732687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded fluorescent probe in mammalian cells.
    Chatterjee A; Guo J; Lee HS; Schultz PG
    J Am Chem Soc; 2013 Aug; 135(34):12540-3. PubMed ID: 23924161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae.
    Lee HS; Guo J; Lemke EA; Dimla RD; Schultz PG
    J Am Chem Soc; 2009 Sep; 131(36):12921-3. PubMed ID: 19702307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors.
    Durner A; Nicke A
    Methods Mol Biol; 2022; 2510():193-216. PubMed ID: 35776326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric synthesis of beta2-amino acids: 2-substituted-3-aminopropanoic acids from N-acryloyl SuperQuat derivatives.
    Beddow JE; Davies SG; Ling KB; Roberts PM; Russell AJ; Smith AD; Thomson JE
    Org Biomol Chem; 2007 Sep; 5(17):2812-25. PubMed ID: 17700850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unnatural amino acids: production and biotechnological potential.
    Narancic T; Almahboub SA; O'Connor KE
    World J Microbiol Biotechnol; 2019 Apr; 35(4):67. PubMed ID: 30963257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Racemic Unnatural Amino Acids to Optically Pure Forms by a Coupled Enzymatic Reaction.
    Lee H; Kim D; Kim S; Lee HS
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.
    Sakata S; Jinno Y; Kawanabe A; Okamura Y
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7521-6. PubMed ID: 27330112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
    Serfling R; Coin I
    Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific fluorescence spectrum detection and characterization of hASIC1a channels upon toxin mambalgin-1 binding in live mammalian cells.
    Wen M; Guo X; Sun P; Xiao L; Li J; Xiong Y; Bao J; Xue T; Zhang L; Tian C
    Chem Commun (Camb); 2015 May; 51(38):8153-6. PubMed ID: 25873388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of α-alkyl-β-amino acids via β-alanine Ni(II) complex.
    Lin D; Lv L; Wang J; Ding X; Jiang H; Liu H
    J Org Chem; 2011 Aug; 76(16):6649-56. PubMed ID: 21736303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift.
    Arribat M; Rémond E; Clément S; Lee AV; Cavelier F
    J Am Chem Soc; 2018 Jan; 140(3):1028-1034. PubMed ID: 29262677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.
    Ravikumar Y; Nadarajan SP; Hyeon Yoo T; Lee CS; Yun H
    Biotechnol J; 2015 Dec; 10(12):1862-76. PubMed ID: 26399851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
    Ozawa K; Loh CT
    Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of a novel genetically encodable fluorescent α-amino acid emitting greenish blue light.
    Gupta A; Garreffi BP; Guo M
    Chem Commun (Camb); 2020 Oct; 56(83):12578-12581. PubMed ID: 32944728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An expanding genetic code.
    Xie J; Schultz PG
    Methods; 2005 Jul; 36(3):227-38. PubMed ID: 16076448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Interaction between Bax and Hsp70 in Cells by Using a FRET System Consisting of a Fluorescent Amino Acid and YFP as a FRET Pair.
    Park SH; Ko W; Park SH; Lee HS; Shin I
    Chembiochem; 2020 Jan; 21(1-2):59-63. PubMed ID: 31206981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids.
    Brun MP; Bischoff L; Garbay C
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3432-6. PubMed ID: 15221831
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.