These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 21733680)
1. Current status of the metabolic engineering of microorganisms for biohydrogen production. Oh YK; Raj SM; Jung GY; Park S Bioresour Technol; 2011 Sep; 102(18):8357-67. PubMed ID: 21733680 [TBL] [Abstract][Full Text] [Related]
2. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production. Zhang C; Lv FX; Xing XH Bioresour Technol; 2011 Sep; 102(18):8344-9. PubMed ID: 21764301 [TBL] [Abstract][Full Text] [Related]
3. Improvements in fermentative biological hydrogen production through metabolic engineering. Hallenbeck PC; Ghosh D J Environ Manage; 2012 Mar; 95 Suppl():S360-4. PubMed ID: 20692761 [TBL] [Abstract][Full Text] [Related]
4. Dark fermentation on biohydrogen production: Pure culture. Lee DJ; Show KY; Su A Bioresour Technol; 2011 Sep; 102(18):8393-402. PubMed ID: 21511469 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production in alkalithermophilic conditions: Thermobrachium celere as a case study. Ciranna A; Santala V; Karp M Bioresour Technol; 2011 Sep; 102(18):8714-22. PubMed ID: 21333530 [TBL] [Abstract][Full Text] [Related]
6. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review. Hung CH; Chang YT; Chang YJ Bioresour Technol; 2011 Sep; 102(18):8437-44. PubMed ID: 21429742 [TBL] [Abstract][Full Text] [Related]
7. Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method. Niu K; Zhang X; Tan WS; Zhu ML Bioresour Technol; 2011 Aug; 102(15):7294-300. PubMed ID: 21602042 [TBL] [Abstract][Full Text] [Related]
8. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Brentner LB; Peccia J; Zimmerman JB Environ Sci Technol; 2010 Apr; 44(7):2243-54. PubMed ID: 20222726 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Abo-Hashesh M; Wang R; Hallenbeck PC Bioresour Technol; 2011 Sep; 102(18):8414-22. PubMed ID: 21470849 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
11. Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. Liu Q; Zhang X; Zhou Y; Zhao A; Chen S; Qian G; Xu ZP Bioresour Technol; 2011 Sep; 102(18):8661-8. PubMed ID: 21470854 [TBL] [Abstract][Full Text] [Related]
12. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5. Li X; Wang Y; Zhang S; Chu J; Zhang M; Huang M; Zhuang Y Bioresour Technol; 2011 Jan; 102(2):1142-8. PubMed ID: 20884205 [TBL] [Abstract][Full Text] [Related]
13. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Tenca A; Schievano A; Perazzolo F; Adani F; Oberti R Bioresour Technol; 2011 Sep; 102(18):8582-8. PubMed ID: 21530242 [TBL] [Abstract][Full Text] [Related]
14. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes. Gabrielyan L; Sargsyan H; Trchounian A Microb Cell Fact; 2015 Sep; 14():131. PubMed ID: 26337489 [TBL] [Abstract][Full Text] [Related]
15. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Ferreira AF; Ortigueira J; Alves L; Gouveia L; Moura P; Silva C Bioresour Technol; 2013 Sep; 144():156-64. PubMed ID: 23867534 [TBL] [Abstract][Full Text] [Related]
16. Hydrogenases for biological hydrogen production. Kim DH; Kim MS Bioresour Technol; 2011 Sep; 102(18):8423-31. PubMed ID: 21435869 [TBL] [Abstract][Full Text] [Related]
17. Improvement of fermentative hydrogen production: various approaches. Nath K; Das D Appl Microbiol Biotechnol; 2004 Oct; 65(5):520-9. PubMed ID: 15378294 [TBL] [Abstract][Full Text] [Related]
18. Trends in biohydrogen production: major challenges and state-of-the-art developments. Gupta SK; Kumari S; Reddy K; Bux F Environ Technol; 2013; 34(13-16):1653-70. PubMed ID: 24350426 [TBL] [Abstract][Full Text] [Related]
19. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585 [TBL] [Abstract][Full Text] [Related]
20. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]