BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21734039)

  • 1. Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation.
    Clippinger AJ; Maguire TG; Alwine JC
    J Virol; 2011 Sep; 85(18):9369-76. PubMed ID: 21734039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynein mediates the localization and activation of mTOR in normal and human cytomegalovirus-infected cells.
    Clippinger AJ; Alwine JC
    Genes Dev; 2012 Sep; 26(18):2015-26. PubMed ID: 22987636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection.
    Clippinger AJ; Maguire TG; Alwine JC
    J Virol; 2011 Apr; 85(8):3930-9. PubMed ID: 21307192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid regulation of TOR complex 1.
    Avruch J; Long X; Ortiz-Vega S; Rapley J; Papageorgiou A; Dai N
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E592-602. PubMed ID: 18765678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes.
    Kudchodkar SB; Yu Y; Maguire TG; Alwine JC
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14182-7. PubMed ID: 16959881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cytomegalovirus induces multiple means to combat reactive oxygen species.
    Tilton C; Clippinger AJ; Maguire T; Alwine JC
    J Virol; 2011 Dec; 85(23):12585-93. PubMed ID: 21937645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase.
    Kudchodkar SB; Yu Y; Maguire TG; Alwine JC
    J Virol; 2004 Oct; 78(20):11030-9. PubMed ID: 15452223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.
    Sancak Y; Peterson TR; Shaul YD; Lindquist RA; Thoreen CC; Bar-Peled L; Sabatini DM
    Science; 2008 Jun; 320(5882):1496-501. PubMed ID: 18497260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.
    Jung J; Genau HM; Behrends C
    Mol Cell Biol; 2015 Jul; 35(14):2479-94. PubMed ID: 25963655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuberous Sclerosis Complex Protein 2-Independent Activation of mTORC1 by Human Cytomegalovirus pUL38.
    Bai Y; Xuan B; Liu H; Zhong J; Yu D; Qian Z
    J Virol; 2015 Aug; 89(15):7625-35. PubMed ID: 25972538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes.
    Miller MJ; Akter D; Mahmud J; Chan GC
    J Virol; 2024 Feb; 98(2):e0188823. PubMed ID: 38289104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity.
    Xie J; Ponuwei GA; Moore CE; Willars GB; Tee AR; Herbert TP
    Cell Signal; 2011 Dec; 23(12):1927-35. PubMed ID: 21763421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication.
    Moorman NJ; Shenk T
    J Virol; 2010 May; 84(10):5260-9. PubMed ID: 20181700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG
    J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
    Wang X; Fonseca BD; Tang H; Liu R; Elia A; Clemens MJ; Bommer UA; Proud CG
    J Biol Chem; 2008 Nov; 283(45):30482-92. PubMed ID: 18676370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational control of the abundance of cytoplasmic poly(A) binding protein in human cytomegalovirus-infected cells.
    Perez C; McKinney C; Chulunbaatar U; Mohr I
    J Virol; 2011 Jan; 85(1):156-64. PubMed ID: 20980505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucine-enriched amino acids maintain peripheral mTOR-Rheb localization independent of myofibrillar protein synthesis and mTORC1 signaling postexercise.
    Hannaian SJ; Hodson N; Abou Sawan S; Mazzulla M; Kato H; Matsunaga K; Waskiw-Ford M; Duncan J; Kumbhare DA; Moore DR
    J Appl Physiol (1985); 2020 Jul; 129(1):133-143. PubMed ID: 32525432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling.
    Rapley J; Oshiro N; Ortiz-Vega S; Avruch J
    J Biol Chem; 2011 Nov; 286(44):38043-38053. PubMed ID: 21914810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling.
    Julien LA; Carriere A; Moreau J; Roux PP
    Mol Cell Biol; 2010 Feb; 30(4):908-21. PubMed ID: 19995915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.