BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21734277)

  • 1. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases.
    Kanaan NM; Morfini GA; LaPointe NE; Pigino GF; Patterson KR; Song Y; Andreadis A; Fu Y; Brady ST; Binder LI
    J Neurosci; 2011 Jul; 31(27):9858-68. PubMed ID: 21734277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport.
    Kanaan NM; Morfini G; Pigino G; LaPointe NE; Andreadis A; Song Y; Leitman E; Binder LI; Brady ST
    Neurobiol Aging; 2012 Apr; 33(4):826.e15-30. PubMed ID: 21794954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity.
    LaPointe NE; Morfini G; Pigino G; Gaisina IN; Kozikowski AP; Binder LI; Brady ST
    J Neurosci Res; 2009 Feb; 87(2):440-51. PubMed ID: 18798283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontotemporal Lobar Dementia Mutant Tau Impairs Axonal Transport through a Protein Phosphatase 1γ-Dependent Mechanism.
    Combs B; Christensen KR; Richards C; Kneynsberg A; Mueller RL; Morris SL; Morfini GA; Brady ST; Kanaan NM
    J Neurosci; 2021 Nov; 41(45):9431-9451. PubMed ID: 34607969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport.
    Tiernan CT; Combs B; Cox K; Morfini G; Brady ST; Counts SE; Kanaan NM
    Exp Neurol; 2016 Sep; 283(Pt A):318-29. PubMed ID: 27373205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition.
    Cox K; Combs B; Abdelmesih B; Morfini G; Brady ST; Kanaan NM
    Neurobiol Aging; 2016 Nov; 47():113-126. PubMed ID: 27574109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphomimetics at Ser199/Ser202/Thr205 in Tau Impairs Axonal Transport in Rat Hippocampal Neurons.
    Christensen KR; Combs B; Richards C; Grabinski T; Alhadidy MM; Kanaan NM
    Mol Neurobiol; 2023 Jun; 60(6):3423-3438. PubMed ID: 36859689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
    Sherman MA; LaCroix M; Amar F; Larson ME; Forster C; Aguzzi A; Bennett DA; Ramsden M; Lesné SE
    J Neurosci; 2016 Sep; 36(37):9647-58. PubMed ID: 27629715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β.
    Vossel KA; Xu JC; Fomenko V; Miyamoto T; Suberbielle E; Knox JA; Ho K; Kim DH; Yu GQ; Mucke L
    J Cell Biol; 2015 May; 209(3):419-33. PubMed ID: 25963821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathological conformations involving the amino terminus of tau occur early in Alzheimer's disease and are differentially detected by monoclonal antibodies.
    Combs B; Hamel C; Kanaan NM
    Neurobiol Dis; 2016 Oct; 94():18-31. PubMed ID: 27260838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin.
    Cuchillo-Ibanez I; Seereeram A; Byers HL; Leung KY; Ward MA; Anderton BH; Hanger DP
    FASEB J; 2008 Sep; 22(9):3186-95. PubMed ID: 18511549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defined Tau Phosphospecies Differentially Inhibit Fast Axonal Transport Through Activation of Two Independent Signaling Pathways.
    Morris SL; Tsai MY; Aloe S; Bechberger K; König S; Morfini G; Brady ST
    Front Mol Neurosci; 2020; 13():610037. PubMed ID: 33568975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau binding to microtubules does not directly affect microtubule-based vesicle motility.
    Morfini G; Pigino G; Mizuno N; Kikkawa M; Brady ST
    J Neurosci Res; 2007 Sep; 85(12):2620-30. PubMed ID: 17265463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau oligomers and tau toxicity in neurodegenerative disease.
    Ward SM; Himmelstein DS; Lancia JK; Binder LI
    Biochem Soc Trans; 2012 Aug; 40(4):667-71. PubMed ID: 22817713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons.
    Morfini G; Szebenyi G; Brown H; Pant HC; Pigino G; DeBoer S; Beffert U; Brady ST
    EMBO J; 2004 Jun; 23(11):2235-45. PubMed ID: 15152189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast axonal transport misregulation and Alzheimer's disease.
    Morfini G; Pigino G; Beffert U; Busciglio J; Brady ST
    Neuromolecular Med; 2002; 2(2):89-99. PubMed ID: 12428805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau and axonopathy in neurodegenerative disorders.
    Higuchi M; Lee VM; Trojanowski JQ
    Neuromolecular Med; 2002; 2(2):131-50. PubMed ID: 12428808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure of the Amino Terminus of Tau Is a Pathological Event in Multiple Tauopathies.
    Combs B; Kanaan NM
    Am J Pathol; 2017 Jun; 187(6):1222-1229. PubMed ID: 28413156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau and Axonal Transport Misregulation in Tauopathies.
    Combs B; Mueller RL; Morfini G; Brady ST; Kanaan NM
    Adv Exp Med Biol; 2019; 1184():81-95. PubMed ID: 32096030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms.
    Kang M; Baker L; Song Y; Brady ST; Morfini G
    Methods Cell Biol; 2016; 131():199-216. PubMed ID: 26794515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.