BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21734611)

  • 21. Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves.
    Undem BJ; Oh EJ; Lancaster E; Weinreich D
    J Neurophysiol; 2003 Mar; 89(3):1196-204. PubMed ID: 12626607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substance P regulates Ih via a NK-1 receptor in vagal sensory neurons of the ferret.
    Jafri MS; Weinreich D
    J Neurophysiol; 1998 Feb; 79(2):769-77. PubMed ID: 9463440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.
    Snitsarev V; Whiteis CA; Abboud FM; Chapleau MW
    Auton Neurosci; 2002 Jun; 98(1-2):59-63. PubMed ID: 12144042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deoxycholic acid activates and sensitizes vagal nociceptive afferent C-fibers in guinea pig esophagus.
    Yu X; Hu Y; Yu M; Undem BJ; Yu S
    Am J Physiol Gastrointest Liver Physiol; 2021 Aug; 321(2):G149-G156. PubMed ID: 34160291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular recording of after-discharge induced by veratrum alkaloids in the guinea-pig nodose ganglion.
    Blackman JG; Borison HL; Milne RJ
    Brain Res; 1975 Nov; 98(2):369-72. PubMed ID: 1182528
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus.
    Yu S; Ouyang A
    Am J Physiol Gastrointest Liver Physiol; 2011 Dec; 301(6):G1052-8. PubMed ID: 21960520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical communication between vagal afferent somata in nodose Ganglia of the rat and the Guinea pig in vitro.
    Oh EJ; Weinreich D
    J Neurophysiol; 2002 Jun; 87(6):2801-7. PubMed ID: 12037182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological properties and chemosensitivity of guinea pig nodose ganglion neurons in vitro.
    Undem BJ; Weinreich D
    J Auton Nerv Syst; 1993 Jul; 44(1):17-33. PubMed ID: 8104970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate.
    Bonvini SJ; Birrell MA; Grace MS; Maher SA; Adcock JJ; Wortley MA; Dubuis E; Ching YM; Ford AP; Shala F; Miralpeix M; Tarrason G; Smith JA; Belvisi MG
    J Allergy Clin Immunol; 2016 Jul; 138(1):249-261.e12. PubMed ID: 26792207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ginger constituent 6-shogaol on gastroesophageal vagal afferent C-fibers.
    Huang Y; Patil MJ; Yu M; Liptak P; Undem BJ; Dong X; Wang G; Yu S
    Neurogastroenterol Motil; 2019 Jun; 31(6):e13585. PubMed ID: 30947399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different role of TTX-sensitive voltage-gated sodium channel (Na
    Kollarik M; Sun H; Herbstsomer RA; Ru F; Kocmalova M; Meeker SN; Undem BJ
    J Physiol; 2018 Apr; 596(8):1419-1432. PubMed ID: 29435993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of mechanical activation of guinea-pig airway afferent neurons by amiloride analogues.
    Carr MJ; Gover TD; Weinreich D; Undem BJ
    Br J Pharmacol; 2001 Aug; 133(8):1255-62. PubMed ID: 11498511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pancreatic polypeptide and peptide YY3-36 induce Ca2+ signaling in nodose ganglion neurons.
    Iwasaki Y; Kakei M; Nakabayashi H; Ayush EA; Hirano-Kodaira M; Maejima Y; Yada T
    Neuropeptides; 2013 Feb; 47(1):19-23. PubMed ID: 22944736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus.
    Yu S; Undem BJ; Kollarik M
    J Physiol; 2005 Mar; 563(Pt 3):831-42. PubMed ID: 15649987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs.
    Nassenstein C; Taylor-Clark TE; Myers AC; Ru F; Nandigama R; Bettner W; Undem BJ
    J Physiol; 2010 Dec; 588(Pt 23):4769-83. PubMed ID: 20937710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge.
    Schild JH; Kunze DL
    J Neurophysiol; 1997 Dec; 78(6):3198-209. PubMed ID: 9405539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological and pharmacological validation of vagal afferent fiber type of neurons enzymatically isolated from rat nodose ganglia.
    Li BY; Schild JH
    J Neurosci Methods; 2007 Aug; 164(1):75-85. PubMed ID: 17512602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenosine-induced activation of esophageal nociceptors.
    Ru F; Surdenikova L; Brozmanova M; Kollarik M
    Am J Physiol Gastrointest Liver Physiol; 2011 Mar; 300(3):G485-93. PubMed ID: 21148396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium channel blockade induces action potential generation in guinea-pig airway vagal afferent neurones.
    McAlexander MA; Undem BJ
    J Auton Nerv Syst; 2000 Jan; 78(2-3):158-64. PubMed ID: 10789695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation.
    Lee MG; Macglashan DW; Undem BJ
    J Physiol; 2005 Jul; 566(Pt 1):205-12. PubMed ID: 15860525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.