These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21734731)

  • 21. Electromagnetic scattering from finite and infinite array of two-dimensional overfilled cavities in a conductive surface using a hybrid finite element surface integral equation method.
    Alavikia B; Ramahi OM
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2444-50. PubMed ID: 23201808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.
    Chremmos I
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jan; 27(1):85-94. PubMed ID: 20035307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light.
    Sendur K
    Opt Express; 2009 Apr; 17(9):7419-30. PubMed ID: 19399120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iterative Solution Method for the Linearized Poisson-Boltzmann Equation: Indirect Boundary Integral Equation Approach.
    Kim MJ; Yoon BJ
    J Colloid Interface Sci; 2001 Apr; 236(1):173-179. PubMed ID: 11254343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic scattering analysis using a combined magnetic field integral equation for small objects with flat surfaces.
    Zhang L; Deng A; Wang M
    Opt Lett; 2015 Oct; 40(20):4719-22. PubMed ID: 26469603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of enhanced field confinement and scattering by optical wire antennas.
    Locatelli A; De Angelis C; Modotto D; Boscolo S; Sacchetto F; Midrio M; Capobianco AD; Pigozzo FM; Someda CG
    Opt Express; 2009 Sep; 17(19):16792-800. PubMed ID: 19770896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward ultimate nanoplasmonics modeling.
    Solís DM; Taboada JM; Obelleiro F; Liz-Marzán LM; García de Abajo FJ
    ACS Nano; 2014 Aug; 8(8):7559-70. PubMed ID: 25077678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High order integral equation method for diffraction gratings.
    Lu W; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):734-40. PubMed ID: 22561931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MEG forward problem formulation using equivalent surface current densities.
    von Ellenrieder N; Muravchik CH; Nehorai A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1210-7. PubMed ID: 16041984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation pattern of plasmonic nano-antennas in a homogeneous medium.
    Sugita T; Yanazawa K; Maeda S; Hofmann HF; Kadoya Y
    Opt Express; 2014 Jun; 22(11):13263-8. PubMed ID: 24921520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wavelet formulation of the polarizable continuum model.
    Weijo V; Randrianarivony M; Harbrecht H; Frediani L
    J Comput Chem; 2010 May; 31(7):1469-77. PubMed ID: 19834886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics.
    Ghadarghadr S; Hao Z; Mosallaei H
    Opt Express; 2009 Oct; 17(21):18556-70. PubMed ID: 20372586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum-corrected transient analysis of plasmonic nanostructures.
    Uysal IE; Ulku HA; Sajjad M; Singh N; Schwingenschlögl U; Bagci H
    Opt Express; 2017 Mar; 25(6):5891-5908. PubMed ID: 28381060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation.
    Shi Y; Chan CH
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):308-18. PubMed ID: 20126243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient reconstruction of dielectric objects based on integral equation approach with Gauss-Newton minimization.
    Tong MS; Yang K; Sheng WT; Zhu ZY
    IEEE Trans Image Process; 2013 Dec; 22(12):4930-7. PubMed ID: 23996559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-domain modeling of TM wave propagation in optical nanostructures with a third-order nonlinear response.
    Kildishev AV; Sivan Y; Litchinitser NM; Shalaev VM
    Opt Lett; 2009 Nov; 34(21):3364-6. PubMed ID: 19881595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.