BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21735017)

  • 21. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Update of the G2D tool for prioritization of gene candidates to inherited diseases.
    Perez-Iratxeta C; Bork P; Andrade-Navarro MA
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W212-6. PubMed ID: 17478516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.
    Zhu J; Qin Y; Liu T; Wang J; Zheng X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S5. PubMed ID: 23734762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pinpointing disease genes through phenomic and genomic data fusion.
    Jiang R; Wu M; Li L
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S3. PubMed ID: 25708473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0).
    Albertini MC; Olivieri F; Lazzarini R; Pilolli F; Galli F; Spada G; Accorsi A; Rippo MR; Procopio AD
    J Biomed Inform; 2011 Aug; 44(4):615-20. PubMed ID: 21334455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Walking on multiple disease-gene networks to prioritize candidate genes.
    Jiang R
    J Mol Cell Biol; 2015 Jun; 7(3):214-30. PubMed ID: 25681405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [High throughput screening and analysis of prostate cancer-related genes through mining databases].
    Wu G; Peng L; Jin FS; Li QS
    Ai Zheng; 2006 May; 25(5):645-50. PubMed ID: 16687091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data.
    Ma X; Lee H; Wang L; Sun F
    Bioinformatics; 2007 Jan; 23(2):215-21. PubMed ID: 17098772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prioritizing regions of candidate genes for efficient mutation screening.
    Braun TA; Shankar SP; Davis S; O'Leary B; Scheetz TE; Clark AF; Sheffield VC; Casavant TL; Stone EM
    Hum Mutat; 2006 Feb; 27(2):195-200. PubMed ID: 16395665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Web tools for the prioritization of candidate disease genes.
    Oti M; Ballouz S; Wouters MA
    Methods Mol Biol; 2011; 760():189-206. PubMed ID: 21779998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of protein sequence and interaction data for candidate disease gene prediction.
    George RA; Liu JY; Feng LL; Bryson-Richardson RJ; Fatkin D; Wouters MA
    Nucleic Acids Res; 2006; 34(19):e130. PubMed ID: 17020920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational disease gene prioritization: an appraisal.
    Gill N; Singh S; Aseri TC
    J Comput Biol; 2014 Jun; 21(6):456-65. PubMed ID: 24665902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach.
    Yuan F; Zhou Y; Wang M; Yang J; Wu K; Lu C; Kong X; Cai YD
    Comput Math Methods Med; 2015; 2015():462363. PubMed ID: 26504486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GOrevenge: a novel generic reverse engineering method for the identification of critical molecular players, through the use of ontologies.
    Moutselos K; Maglogiannis I; Chatziioannou A
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3522-7. PubMed ID: 21846603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.