These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21735296)

  • 1. Spinal projections from the presumptive midbrain locomotor region in the mouse.
    Liang H; Paxinos G; Watson C
    Brain Struct Funct; 2012 Apr; 217(2):211-9. PubMed ID: 21735296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projections from the lateral vestibular nucleus to the spinal cord in the mouse.
    Liang H; Bácskai T; Watson C; Paxinos G
    Brain Struct Funct; 2014 May; 219(3):805-15. PubMed ID: 23503971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The red nucleus and the rubrospinal projection in the mouse.
    Liang H; Paxinos G; Watson C
    Brain Struct Funct; 2012 Apr; 217(2):221-32. PubMed ID: 21927901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.
    Liang H; Watson C; Paxinos G
    Brain Struct Funct; 2015 Jan; 220(1):263-71. PubMed ID: 24129768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.
    Liang H; Watson C; Paxinos G
    Brain Struct Funct; 2016 Apr; 221(3):1623-33. PubMed ID: 25633472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: a neuroanatomical substrate for reciprocal orofacial-cervical interactions.
    Devoize L; Doméjean S; Melin C; Raboisson P; Artola A; Dallel R
    Brain Res; 2010 Jul; 1343():75-82. PubMed ID: 20450895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatosensory projection to the mesencephalon: an anatomical study in the monkey.
    Wiberg M; Westman J; Blomqvist A
    J Comp Neurol; 1987 Oct; 264(1):92-117. PubMed ID: 2445793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components.
    Cowie RJ; Holstege G
    J Comp Neurol; 1992 May; 319(4):536-59. PubMed ID: 1619044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferent projections to the deep mesencephalic nucleus in the rat.
    Veazey RB; Severin CM
    J Comp Neurol; 1982 Jan; 204(2):134-50. PubMed ID: 6276447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections from the paralemniscal nucleus to the spinal cord in the mouse.
    Liang H; Duan D; Watson C; Paxinos G
    Brain Struct Funct; 2013 Sep; 218(5):1307-16. PubMed ID: 23052549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region.
    Noga BR; Fortier PA; Kriellaars DJ; Dai X; Detillieux GR; Jordan LM
    J Neurosci; 1995 Mar; 15(3 Pt 2):2203-17. PubMed ID: 7891162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Termination of vestibulospinal fibers arising from the spinal vestibular nucleus in the mouse spinal cord.
    Liang H; Bácskai T; Paxinos G
    Neuroscience; 2015 May; 294():206-14. PubMed ID: 25791229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord.
    Eide AL; Glover J; Kjaerulff O; Kiehn O
    J Comp Neurol; 1999 Jan; 403(3):332-45. PubMed ID: 9886034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamina I spinocervical tract terminations in the medial part of the lateral cervical nucleus in the cat.
    Craig AD; Broman J; Blomqvist A
    J Comp Neurol; 1992 Aug; 322(1):99-110. PubMed ID: 1385489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections from the oral pontine reticular nucleus to the spinal cord of the mouse.
    Liang H; Watson C; Paxinos G
    Neurosci Lett; 2015 Jan; 584():113-8. PubMed ID: 25459287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long ascending projections to the midbrain from cells of lamina I and nucleus of the dorsolateral funiculus of the rat spinal cord.
    Swett JE; McMahon SB; Wall PD
    J Comp Neurol; 1985 Aug; 238(4):401-16. PubMed ID: 3840182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat.
    Loewy AD; Burton H
    J Comp Neurol; 1978 Sep; 181(2):421-49. PubMed ID: 690272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.