These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21735484)

  • 1. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.
    Zhu X; Mitchell JC
    Proteins; 2011 Sep; 79(9):2671-83. PubMed ID: 21735484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy.
    Tuncbag N; Gursoy A; Keskin O
    Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated decision-tree approach to predicting protein interaction hot spots.
    Darnell SJ; Page D; Mitchell JC
    Proteins; 2007 Sep; 68(4):813-23. PubMed ID: 17554779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein-protein interaction sites using support vector machines.
    Koike A; Takagi T
    Protein Eng Des Sel; 2004 Feb; 17(2):165-73. PubMed ID: 15047913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feature-based approach to modeling protein-protein interaction hot spots.
    Cho KI; Kim D; Lee D
    Nucleic Acids Res; 2009 May; 37(8):2672-87. PubMed ID: 19273533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature-based classification of native and non-native protein-protein interactions: Comparing supervised and semi-supervised learning approaches.
    Zhao N; Pang B; Shyu CR; Korkin D
    Proteomics; 2011 Nov; 11(22):4321-30. PubMed ID: 22002942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for prediction of protein interaction sites based on integrated RBF neural networks.
    Chen Y; Xu J; Yang B; Zhao Y; He W
    Comput Biol Med; 2012 Apr; 42(4):402-7. PubMed ID: 22226645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-accessible surface area: How well can be applied to hot-spot detection?
    Martins JM; Ramos RM; Pimenta AC; Moreira IS
    Proteins; 2014 Mar; 82(3):479-90. PubMed ID: 24105801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.
    Liu Q; Ren J; Song J; Li J
    PLoS One; 2015; 10(12):e0144486. PubMed ID: 26675422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic prediction and ranking of human protein-protein interactions.
    Scott MS; Barton GJ
    BMC Bioinformatics; 2007 Jul; 8():239. PubMed ID: 17615067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of biological protein-protein interactions using atom-type and amino acid properties.
    Aziz MM; Maleki M; Rueda L; Raza M; Banerjee S
    Proteomics; 2011 Oct; 11(19):3802-10. PubMed ID: 21789780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.
    Chen P; Li J; Wong L; Kuwahara H; Huang JZ; Gao X
    Proteins; 2013 Aug; 81(8):1351-62. PubMed ID: 23504705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel methods for predicting protein-protein interactions.
    Ben-Hur A; Noble WS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i38-46. PubMed ID: 15961482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules.
    Li Z; Li J
    Proteins; 2010 Dec; 78(16):3304-16. PubMed ID: 20818601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.
    Agrawal NJ; Helk B; Trout BL
    FEBS Lett; 2014 Jan; 588(2):326-33. PubMed ID: 24239538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces.
    Burgoyne NJ; Jackson RM
    Bioinformatics; 2006 Jun; 22(11):1335-42. PubMed ID: 16522669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.
    Chen R; Zhang Z; Wu D; Zhang P; Zhang X; Wang Y; Shi Y
    J Theor Biol; 2011 Jan; 269(1):174-80. PubMed ID: 21035465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.